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ABSTRACT 

SEMANTIC NEWS ANALYSIS & PREDICTION 

by 

SETH R. ORELL JR. 

Texas State University – San Marcos 

June 2011 

SUPERVISOR PROFESSOR: ANNE HEE HIONG NGU 

Active stock trading firms have a need for quick analysis of financial news items. News 

affects markets. Predicting how a news article may move a stock’s price can give a 

trader an edge over competitors and this involves the automatic understanding of a news 

item’s semantics. Years of research on semantic Web Services has yielded a variety of 

techniques to discern or provide meaning beyond the basic WSDL syntax. I believe that 

this research into Web Service semantics has relevance in other fields, specifically the 

content analysis of news as it applies to markets. 

The purpose of the present study is to determine if specific academic models of Web-

based semantic analysis can be utilized to provide market price predictions. The study’s 

design allows for an objective measure of accuracy by comparing predictions against 
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actual market changes. In the study, I explore the application of current “Top-Down” 

Web service semantic analyzers to distill the various approaches into abstract concepts. I 

take a common approach of textual content matching and apply it with and without 

synonym-analysis (a form of spread activation) with promising results. 

Using the securities in the Russell 1000 Index (chosen for market liquidity and activity), 

I collected corresponding news articles from Reuters for 8 months. For each article, I 

pulled one-minute snapshots of market data for the article’s publishing date and corre-

sponding security. I then divided the news items into two groups: an in-sample learning 

set and an out-of-sample input set. The in-sample set of news provided “predictions” for 

price movement and I could contrast this against what the input item actually did in the 

market. 

Simple semantic analysis produced encouraging results with a rate of return (profit) 

better than random for shorter hold durations (one to five minutes). A synonym-based 

strategy showed a stronger return for longer hold periods (thirty to forty-five minutes). 

Both strategies performed better than a random matching approach, which lost money 

for every hold duration. These results show potential for similar and broader market 

analysis using established academic models of semantic Web analysis. 
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“I have a dream for the Web [in which computers] become capable of analyzing all the 

data on the Web – the content, links, and transactions between people and computers. A 

‘Semantic Web’, which should make this possible, has yet to emerge, but when it does, 

the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by 

machines talking to machines. The ‘intelligent agents’ people have touted for ages will 

finally materialize.” 

 
Sir Timothy Berners-Lee 

W3C Director 
 

“What's worth doing is worth doing for money.” 

 
Gordon Gekko 

Wall Street, 20th Century Fox, 1987 
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I. A GENTLE INTRODUCTION 

THE SEMANTIC WEB 

Semantics imply meaning. The “Semantic Web” (as proposed (1)) provides meaning to 

the World Wide Web, but not for us. We can readily understand what we see on the Web; 

computers cannot. Web services, while incorporating a widely used standard with precise 

syntax, lack the ability to express the meaning of their content. At least, a clear standard 

for describing the meaning of Web services has not emerged.  For the remainder of this 

paper, we will focus on Web service semantics as opposed to other Web content. 

Web services provide a loosely-coupled interface to Service Oriented Architecture over 

current transport standards (e.g., HTTP). Businesses view Web services as a complemen-

tary field to their own core business model (2). The re-use of existing Web services 

appeals to businesses because they can take advantage of these existing services (their 

own and others) and compose them into new business services. While positively promot-

ing code reuse, these compositions become difficult to construct by the Spartan Web 

APIs alone. Web developers need context and semantics to effectively provide service 

composition. 

Automatic Web service composition solves a major problem in the proposed “Semantic 

Web” - computers understanding and communicating with each other without human 

intervention. Some say the ultimate goal (3) of Web services is the automation of this 

composition. For Web services to properly interact with each other as pieces of compos-

ite applications, the entities involved must agree upon the semantics that will govern their 

interaction. “This is part of a broader problem known as the semantic interoperability 
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problem. Semantic interoperability enables Web services to interact with each other 

despite their semantic nuances.” (Papazoglou, p. 548) 

Researchers have long studied various methods of solving this semantic interoperability 

problem and their approaches vary. However, these approaches typically fall within two 

general classes that I will call bottom-up and top-down1. Bottom-up semantic analysis 

begins with the Web service author providing design-time semantic content for specially-

purposed services (4) to consume. So, as the Web service advertises its operations, 

inputs, and outputs, it simultaneously provides context (metadata) to express the meaning 

of each. 

Let us suppose a Web service operation returned a make/model of a car. The SOAP 

(Simple Object Access Protocol – although it evolved beyond this acronym with W3C 

standard 1.2) version of this might look as follows (Figure 1.1): 

<make>Chevrolet</make> 

Figure 0.1 

A bottom-up approach would annotate this line with a description that describes the 

content. A rudimentary version of this markup might look something like Figure 1.2: 

<make rdf:about=http://dbpedia.org/resource/automobile/manufacturer> 

  Chevrolet 

</make> 

Figure 0.2 

                                                
1 These terms are well-used and part of the public domain when used to describe Web services – I do not 
claim authorship of either term. 
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This relatively simple bit of markup increased our character count by 62 (over 200%) and 

this type of semantic description language can get quite verbose in a more detailed 

application. Clearly, bottom-up semantics come at a cost much greater than that to 

provide basic content, but other methods exist that require no extra markup to extrapolate 

meaning: top-down analysis. 

With a little bit of domain knowledge about the Web service (e.g., a car dealership 

locater, social networking, gene sequencing) computers can successfully discover mean-

ing in a manner similar to the way you or I do – by reading and associating. Top-down 

Web service composition takes the available Web service descriptors and extracts mean-

ing from what they expose already to map related content. 

For example, a computer can easily recognize the following method signature (Figure 

1.3) and determine it receives a string and returns a decimal. 

public decimal GetStockQuote( string symbol )   

Figure 0.3 

However, you or I can immediately discern that the method is providing a stock price for 

a given symbol. We associate the words to our understanding of the English language and 

arrive at a meaning without too much thought. We took the existing information in the 

method signature and, noticing that “stock,” “quote,” and “symbol” all refer to financial 

market terms, correctly determined that the return result (of type decimal) will be a 

“price.” We picked up on the information provided by the original programmer and 

his/her intent on a future consumer; i.e., we utilized the author’s “self-documenting” code 
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(5). Computers, while not quite so intuitive, can achieve remarkable accuracy (6) given 

the right domain context. 

Researchers have worked on this problem even before Berners-Lee’s proclamation of 

“Web 3.0” (1) and numerous papers (6; 7; 8; 9; 10) exist on the top-down style of garner-

ing semantics and composing services. My research aims to build on this published 

knowledge and apply the same analysis methods to other sources besides Web services, 

specifically RSS-supplied financial news. 

During my studies in Web services engineering, I also worked as a software engineer in a 

proprietary trading firm. There, I encountered a need for interpreting financial news in a 

manner that would indicate whether it would affect a stock price. The company received 

news but could not automatically associate how it may affect a stock’s market price. I 

noticed how this fit the pattern of the Web service “semantic interoperability problem” 

and began to jot down ideas that became the seeds for my subsequent research and this 

thesis. 

STUDY QUESTION 

CAN I APPLY ACADEMIC SEMANTIC WEB RESEARCH TOWARD BASIC 

STOCK MARKET PREDICTIONS? 

While top-down semantic analysis can, in some cases (6), validate the meanings they 

detect, most rely on some sort of external (human) authentication. In this research, I 
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explored how market movement can provide an objective2 way to verify the semantic 

analysis. In effect, as a price changes, it “grades” the predictions given by the analyzer. 

At a high level, my approach involves two types of input: financial/business news arti-

cles, and market data. News items came from RSS feeds in near real-time. I fetched 

historical market data after enough time had passed for it to be available3. I stored these 

data for later evaluation with different types of semantic analyzers. For the analysis, I 

took top-down approaches used by Web service researchers attempting to solve the 

semantic interoperability problem and applied them to the news articles. Ultimately, the 

short-term movement of the stock price of the company in the news article provided 

feedback to the semantics learned. 

To keep the research focused, I limited the depth of analysis to “good” or “bad.” That is, 

the result set for any semantic approach falls into either a good news (price will go up) 

category or a bad news (price will go down) category. This step closely resembles the 

established data mining task of “classification” (11) with only two types of grouping: 

good and bad.  

By connecting two or more news articles, I attempt to form a meaningful link between 

them so that I can predict the behavior of the market. The ability to predict links is central 

to many data mining tasks (12) and extensive literature exists on the topic. The problem 

is still relevant, however, and can be summarized simply as “given two entities in a 

                                                
2 Market prices are only partially objective, as they are ultimately driven by the decisions of humans – even 
in the cases of humans programming the algorithms that trade in the markets. 
3 Real-time market data is expensive and not needed for my analysis. Once the data is just 15 minutes old, 
the cost drops considerably 
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network, should there be a link between them?” (13) The matching engine I use is built 

on top of this research and owes much of its efficiency to this related literature. (14; 15) 

To simplify analysis, I limited the scope of market movement to a short time period after 

the release of the news article. Based on these simple categorizations, I “tested” my 

results by either buying on good news or short-selling on bad news (with imaginary 

money in an imaginary market). After the time period ended, I realized any profits or 

losses and recorded these as output. 

As an example, a particular approach (2) involves simple parsing of the news content - 

stripping out proper nouns, removal of stop-words, etc. – and using the remaining words 

to rank the article. We know the time of the news story and can observe what happened to 

the stock price in the minutes/hours after the newsroom released the article. Based upon 

how much the price moved, we then apply weights – positive or negative - to these 

words. Over time, and over many news stories, the common words lose significance. This 

leaves me with a collection of essential words that, upon receipt of a current news article, 

can immediately provide an analysis of what the stock price is likely to do. The preceding 

example could be repeated with two or three word phrases as well. 

Another approach, as researched by Syeda-Mahood et al (7), takes advantage of the 

common language used (English) coupled with a simple thesaurus-like mapping to 

provide a degree of synonymy. For example, if one news story mentions “fraud” and 

another mentions “cheat,” we may associate these words as similar meaning – “steal” and 

increase the weights of the original words as if they appeared more than once. I borrow 
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this technique from bottom-up, ontological semantic approaches and record how it may 

add value to the overall correctness. 

THESIS CONTRIBUTIONS 

The main contributions of this thesis are as follows: 

• I show that existing “Top-Down” semantic Web analysis techniques applied to 

financial news enables me to build a low-cost system for automatic prediction of 

stock market movement. 

• I developed a workflow process (SNAP) that can be used to streamline the scor-

ing of an unseen financial news item using the past movement of stock prices. 

• I show that my matching/prediction engine holds slight promise for simple key-

word matching but demonstrates great potential for synonym matching. I also 

report that randomly matching news items likely results in no potential profit. 

ASSUMPTIONS 

I approached this new research with a few assumptions. First, news articles can affect 

market prices. I will not assume that every article moves the market, or even that news 

has a long-term effect on a stock price (16), but we can readily observe news affecting 

short-term market pricing on any financial cable network broadcast. Secondly, the 

authors of the news articles write their stories without knowledge of any specific down-

stream parsing/analysis. Harder to verify, we must rely on statistics and sheer numbers to 

provide some insulation between the article writers and this, admittedly small, demo-

graphic who wishes to automatically extract meaning from their words. Finally, I assume 

that news articles use similar words to express similar meaning. The target audience of 
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breaking financial news expects a compact and quickly-digestible article. The journalist 

writing the article has little allowance for word-play or sesquipedalianism4 . 

RELATED WORK 

AUTOMATIC GENERATION OF BLAST SERVICE TYPES 

Top-down semantic analyzers can thrive with deep domain-specific knowledge. A 2005 

paper from Ngu, Rocco, Critchlow, & Butler titled “Automatic Discovery and Interaction 

with Bioinformatics Web” looks into how a computer, given a special domain, could 

continually and automatically classify “BLAST Web services by pattern identification.” 

(6) 

BLAST stands for Basic Local Alignment Search Tool and contains an algorithm for 

comparing primary biological sequence information. It allows a researcher to compare a 

query sequence with a library and identify sequences that resemble the original beyond a 

certain threshold. This research involved crawling the Web looking for BLAST services. 

Once discovered, they utilized pattern matching (via regular expressions) to identify 

services of a particular type and then unify (compose) these sources behind a single 

interface that updates and maintains its sources without manual intervention. 

Within the scope of BLAST biological sequencing, their “data-type learner” engine 

showed 100% precision in recognizing alignment sequence in an unseen document. This 

type of accuracy becomes possible because of the deep knowledge of a focused domain. 

SEMANTIC MATCHING IN WEB SERVICE COMPOSITION 

                                                
4 Sesquipedalianism (adj) – given to using long words; (of a word) containing many syllables 
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Semantic analysis can also provide the context necessary for further domain-specific 

analysis. In 2008, Aviv Segev published research (2) that used a Web service’s WSDL 

syntax to generate context that could be used to match similar services. This approach 

involved both text extraction and tokenization. The process then fed these tokenized 

words into a Web-based search engine and then extracted context from the results. While 

admittedly slow, this process shows promise for composing Web services without 

previous domain knowledge. 

Another, similar 2005 study (7) from Syeda-Mahmood, Shah, Akkirunu, et al. follows a 

similar model. They sought to match Web services by taking WSDL syntax and extract-

ing the names of operations, inputs, and outputs. They then tokenized/parsed these names 

and used a simple English thesaurus to group like-minded operations and services with-

out knowing what it was the services did. For example, during their processing, words 

like “ID” and “Id” both became “Identifier” via a dictionary. Words like “stock” and 

“inventory” intersect once pumped into a thesaurus. All of this is done without regard to 

the domain of the service. 

Woogle, an “intelligent [W]eb service search engine,” (10) offers another approach to 

garnering semantics from Web services. It also focuses on WSDL syntax, but applies a 

concept its researchers call “clustering” to find meaningful concepts from parsed words. 

The research around Woogle suggests that “parameters tend to express the same concept 

if they occur together often.” Their approach involves each individual term starting as its 

own cluster. The algorithm then proceeds in a greedy fashion, creating associations that 

exceed certain thresholds. While this procedure can be quite complex, Web service 

descriptions are typically sparse which keeps the input size relatively small. 
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BLOGSCOPE’S ONLINE BLOGOSPHERE ANALYSIS 

Professionally published news articles aren’t the only source of new content injected into 

the Web. The ability to publish commentary as a blog has allowed anyone with a com-

puter to report on current events. The term “blogosphere” describes the universe of blogs 

as a connected community. 

In 2006, researchers at the University of Toronto’s computer science department began 

systematically collecting and analyzing these blogs to find patterns and trends (17). 

Similar to my approach, BlogScope analyzes the actual textual content of the blog posts 

and not the tags. In this manner, they try to form their own semantic associations instead 

of relying on the bottom-up analysis of blog tags. 

PROPRIETARY NEWS-TO-PRICE RESEARCH 

Active trading companies have a long-standing need to make quick decisions – they seek 

to capitalize in short-term (hours, minutes, or even seconds) movements of stock prices. 

Many 3rd-party solutions exist to provide predictions of market prices, and many more 

companies actively develop their own solutions. However, the strategies employed by 

these companies are tightly guarded. Even some of the current published research on this 

topic (e.g. AZFinText (18; 19) and NewsCATS (20)) only reveals high-level workflows. 

The devil remains in the details. 

However, some academic researchers have published their algorithms and strategies for 

solving this problem. Recent work from S. Wang et al. attempts to find relationships 

between news events and stock market price changes using an ontology-based data 
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mining approach (21). By classifying news into categories and then applying expert-rules 

reasoning, these researchers offer another method of predicting stock market impact. 

My approach seeks not to compete with the prevailing commercial products available to 

trading firms, but to explore whether promising approaches in Web service semantics 

have value to the trading industry. Further – and perhaps more interesting – by showing a 

forward link from Web service semantic analyzers to the financial industry, I hope to 

demonstrate that we are trying to solve a common problem and that a common solution 

may exist. 
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II. METHODOLOGY 

REQUIREMENTS AND SPECIFICATIONS 

MODELING AN APPROACH 

Over time, enterprising people have tried numerous techniques for predicting the behav-

ior of the stock market. From neural networks to astrology to throwing darts at the 

financial pages, all manner of approaches have yielded all manner of results. Regardless 

of one’s favorite prediction method, the business of active trading (or “day trading”) 

remains a popular business both in the U.S.A. and around the world.  

The ultimate requirement for this work is to predict the market. With that lofty goal out in 

the open, let’s refine our objective a bit to see if we can show any potential for predicting 

the market. Further, we wish to accomplish this using techniques of published research 

into Semantic Web Composition. As stated earlier, our top-down approach will utilize 

various string-matching tools and algorithms used with success in other studies. 

To test my study question, I need two basic sets of things: data, and tools to analyze the 

data. The next sections in this chapter describe both the kinds of data required and the 

specific technical tools I used to perform my evaluation. 

DATA TYPES 

Data drives this study. While avoiding a deep explanation of market terms, I can catego-

rize my data as follows: 
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• Exchanges - An exchange is an organized market where tradable financial instru-

ments are bought and sold. Narrowing this list to standard, electronic-friendly, 

stock markets keeps the study focused on securities that are of interest to day 

traders. 

• Companies - On a particular exchange, shares of ownership in corporations (often 

called “stocks”) are bought and sold at whatever prices the market will bear. The 

company’s name is often abbreviated into its stock “symbol.” For example, Mi-

crosoft Corporation uses the abbreviation “MSFT”. 

• Tickers - When a stock changes hands in an exchange, the exchange transaction 

both records and publishes the details of the sale including the volume (quantity), 

price, and date/time. These transactions make up the “tickers” often seen scrolling 

across a screen on a news broadcast or trading floor. These records give us a view 

of the stock’s price over time. 

• News Items - These data are similar to a news article you may read in a local pa-

per. Except, these items come from feeds that capture additional information like 

publication date/time, and the company affected. 

TOOLS USED 

To accumulate, navigate, and aggregate the data this study needs, I had to construct tools 

to fetch, organize, and analyze these data. With many years of professional development 

using Microsoft’s .NET framework, I chose it as the primary architecture for the project. 

The start of my research coincided with the release of .NET 4.0 and the new ADO.NET 

Entity Framework (EF). I took this opportunity to learn EF while it modeled my data in 

code. EF sits on top of a MS-SQL database and abstracts the relational (logical) schema 
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of the data as it resides in the database into a conceptual schema that I can access through 

code. 

I chose to implement all coding in C# (v4.0), which has enough flexibility and power to 

efficiently handle all the designs I constructed. The C# language should look familiar to 

Java or C++ programmers and should allow anyone to follow the workflow and logic. 

All development occurred with the Visual Studio 2010 (VS) IDE which provided an ideal 

environment to keep files organized. Its built-in compiler and debugger gave me visibility 

into how the code functioned and allowed me to focus on creating tools instead of 

managing builds. 

EXTERNAL RESOURCES 

Whenever possible, I tried to use existing tools and resources. Further, I looked for free 

and/or open-source versions if any were available. For instance, Google Finance provides 

a free Web service endpoint to get opening prices for given securities. I used this service 

daily to fill in gaps in my traditionally acquire5d market data. The remainder of the 

market data came from a professional Web site that specialized in historical (older than 

fifteen minutes) stock market indicators. 

Reuters also provides feeds in a standard format called “Really Simple Syndication”6 

(RSS) which is specified in XML. This allowed me to programmatically extract the RSS 

feeds into News Items which I could store in my database. These free feeds began the 

chain of collecting data and gave direction to what market data we needed. 

                                                
5 I paid for it. 
6 Also less-commonly called “Rich Site Summary” and “RDF Site Summary” 
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Open-source projects, such as the HTML Agility Pack7and Apache Lucene8 provided 

algorithms to handle complicated text parsing and powerful text association. Both of 

these libraries play integral parts inside the data acquisition and data analysis, respec-

tively. Without tools like these, this project would have taken considerably more time and 

effort. 

ALGORITHMS AND DATA STRUCTURES 

SLEW OF DATA 

As mentioned earlier, data drives this project; so much so that I ended up with volumes of 

it. Early on in my study, it became apparent that the free version of Microsoft’s SQL 

Server would not suffice (data size exceeded limitations). Soon it became clear that my 

greatest research challenge would be how to handle, arrange, and aggregate data in a 

fashion that would complete in a reasonable amount of time9. 

This led me to develop the program in phases with my top priority to gather data. I ran 

the news and market data “fetcher” nightly for months to gather the many gigabytes of 

data I required for my upcoming analysis. All the while, I refined the code, learned more 

about how to best use Entity Framework, and simply get out of my own way to let the 

data write. 

With additional resources, I could easily parallelize this process. But my equipment was 

limited to a single (albeit relatively beefy) computer. For future studies, I could readily 

move to a server farm or cloud setup to dramatically speed up throughput. 

                                                
7 http://htmlagilitypack.codeplex.com/ 
8 http://incubator.apache.org/projects/lucene.net.html 
9 Early versions of the data fetching program took 8-12 hours to complete 
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SPEED BEATS SPACE 

Using the proper data structures made some of my problems easier. With a 64-bit operat-

ing system and 8GB of RAM10 I could afford to build in-memory structures that offered 

faster look-ups than a similar SQL query to disk. By building a Dictionary - a generic 

HashTable - I could spend O(n) time performing slow SQL reads, but only once. Then, I 

could use the Dictionary over and over with O(1) look-ups. These could be memory 

intensive, but selective building and then releasing of these data structures greatly sped 

up my data access and allowed complicated analysis to occur. I only had to be aware of 

my total system memory usage so I didn’t exceed the physical capacity of the machine 

and start paging/swapping to disk as this greatly degraded performance. 

Another key technology feature that allowed me to map data into memory is a relatively 

new feature11 to .NET called Language Integrated Query, or LINQ. This component 

allows programmers to query any data structure similar to how one would query a 

database. This allowed me to continue to accurately query data in memory as succinctly 

as I would writing SQL set queries. 

Once I could determine what set of data I needed to select, LINQ let me treat my data-

base as a long-term storage solution and not as a query engine. My queries executed one 

layer upward, in the code. This gave me a tremendous performance boost to allow 

complex analysis to happen. 

ENTER LUCENE 

                                                
10 The maximum amount my research laptop could handle 
11 Since .NET 3.5 (11-09-2007) 



 
 

17 
 

During my research, I began to encounter papers dealing with semantic matching using 

an open-source search engine library called “Lucene.” (22; 23) Having worked with the 

Apache Lucene project in the recent past, I knew it to be a powerful and fast index-

ing/search tool. What I discovered was that researchers were using Lucene to map 

semantic relationships, manage large ontology data repositories, and to quantitatively 

measure the success of concept mappings. All of these approaches differ somewhat from 

Lucene’s advertised functionality12 and they gave me the idea that perhaps I could bend 

the library to meet my needs as well. 

The Lucene indexer takes input text, parses and then indexes it. Its search library then 

uses a combination of algorithms to perform fast, accurate searches. Under the hood, 

Lucene uses a customizable mixture of a Boolean Model and a Vector Space Model to 

match and retrieve documents (24). Boolean and Vector Space are two common theoreti-

cal models of search. 

In a pure Boolean model, we either find a match or we do not. With this search archetype, 

the engine does not score nor associate any relevance with matching documents. This 

model merely “identifies a subset of the overall corpus as matching the query.” (24) 

Vector space modeling takes both our search queries and our indexed input and models 

them as vectors in a high dimensional space. Each specific indexed term becomes a 

dimension in this search pattern. The vector distance between a search query and nearby 

terms computes into a score to rank the likelihood of a match. 

                                                
12 Lucene is advertised as a “free, open-source information retrieval software library” 
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Figure 0.1 

Figure 2.1 (above) illustrates a typical vector space model where documents (�) and 

queries (�) are represented as vectors such that ��=(�1,�, �2,�, …, ��,�) and �=(�1,�, 

�2,�, …, ��,�). The deviation of the angle � between the vectors measures how close the 

query matches the document.  

Lucene also considers the rarity of the term matched when calculating scores. It deter-

mines the frequency of the indexed term within the global space of all terms. For 

example, if we matched a term that is not very common in the indexed set of data, this 

match would produce a higher weighted score than a more frequently encountered term. 

This algorithm is similar to the standard Term Frequency - Inverse Document Frequency 

(TF-IDF) used in many information retrieval systems. (25)  

PUTTING IT ALL TOGETHER 

The whole system can be abstracted into the architectural diagram below (Figure 2.2). 

Each section of work is driven by the data entering its boundary. In the following chap-

ters, I cover each of the three sections in detail and explain how they support one another. 
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Figure 0.2 
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III. CONCEPTUAL DEFINITIONS 

A PROBLEM, REVISITED 

The traders know that news affects stock prices. Dozens of flat-panel televisions tuned to 

a popular Financial News Network illuminate the otherwise dimly lit trading floor. When 

news hits, they react quickly to stay ahead of the curve. 

I helped design and develop a software product that matched incoming news items to 

traders that held a position (either owning or owing shares of a company) by the particu-

lar company. I routed this news right to their desktop trading station so they didn’t have 

to even look up to receive timely and relevant news. 

However, the one thing I could not provide was the meaning of the news item: its seman-

tic content. The trader had to scan the news to determine if it meant the position was 

worth holding (the price would go up) or they needed to get out of the position (the price 

would fall). What I wanted was a way to give the trader advice as to which direction the 

stock’s price would likely go. Even something as simple as a red light (sell!) or green 

light (buy or hold) to accompany the article could provide an edge to the trader and 

profits for the company. 

A natural extension of this workflow is to route these trading decisions (buy/sell/hold) to 

a “black box” that could execute the trades automatically. Of course, both the traders and 

the business would need evidence that such a process would work effectively before 

risking real money. 
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ON-THE-FLY MAPPING 

Clearly, I have no way to pre-populate the semantic bits of the news item. If I wanted a 

“bottom-up” semantic approach, I would expect the news item to have markup like 

Figure 3.1: 

 

<NewsItem rdf:about=thisIsGoodNews> 

    Here is the body of a news item that must be good, according to our RDF      

markup! 

</NewsItem> 

Figure 0.1 

But, I do not receive this. My real news item has no RDF tags to tell me semantic mean-

ing. I must derive the intent in real time. Hence, I now have a similar problem to the 

automatic Web service composition I mentioned earlier. I have two sets of services (news 

providers and traders), a clearly-defined domain, and test data to score results. 

I want to use the first service (news) to influence the second (trading), and have to find 

common ground between the two. If I can boil down the data to its core pieces, I can 

form ontologies that will let me map meaning.  

Fortunately, both the news and the trader relate to a company (or two, or three). As stated 

above, this lets me route news items to traders who have an interest in the company 

mentioned. However, a second relationship exists if we divide our news items in a crucial 

way - past and present. 
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Past news items come with a benefit - I readily know what the stock price did after the 

news arrived. I can quickly query an old news item to find its impact on the company’s 

stock price. My ontology mapping now involves the “new” news item relating to the 

“old” one. Between these two relationships, I show how certain semantic Web mapping 

techniques hold promise for securities trading. In particular, I show how search libraries 

can facilitate this with speed and flexibility. 

For example, before I start predicting, I “train” my engine by parsing and indexing 

months of previously captured news articles. Then, when I receive a new article (“Wid-

gets-R-Us (WRU) proclaims lower than expected earnings this quarter...”), I similarly 

parse it and have the matching engine find me the best match from my pool of training 

articles (“Fizzbang’s (FZB) low quarterly earnings disappoint investors...”).  

Once I have my match, I get the stock symbol for the matched article (FZB) and look up 

its historical price at the exact time of the FZB news event ($14.52) and at specified 

periods afterward ($14.27 after 5m, $14.21 after 10m, $14.34 after 20m, etc.) This 

suggests to me that the stock described in the new news article (WRU) will lose value 

over the next five to fifteen minutes. I give an instruction to short-sell13 and then exit the 

position in ten minutes. 

SEARCH SOLUTIONS 

For semantic Web services to automatically interact and communicate meaningfully, they 

must know that the service to whom they connect contains meaningful content. Regard-

                                                
13 A market transaction in which an investor sells borrowed securities in anticipation of a price decline and 
is required to return an equal number of shares at some point in the future. 
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less of the approach of the service’s semantic discovery (bottom-up/top-down), as it 

seeks out appropriate endpoints from other services, it searches. 

Search, with respect to Web service composition, can involve utilizing common, power-

ful programming tools like Regular Expressions. This kind of search involves a 

specialized formal language that allows for a flexible means to match strings or patterns 

of strings (26). 

Other formal languages are commonly used in search, such as Structured Query Lan-

guage (SQL) for relational database searches, XQuery for XML queries, and LINQ for 

.NET containers. As such, “search” pervades much of modern programming in one form 

or fashion. 

This project uses keyword, synset, and spread-activation search strategies to associate 

news articles. These searches aim to match semantics and concepts between articles as a 

means to predict price. 

SNAP WORKFLOW 

I capture this entire process of news analysis, semantic mapping, and price prediction in a 

workflow I call SNAP, which stands for Semantic News Analysis & Prediction. 

 

Figure 0.2 
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This workflow, as illustrated in Figure 3.2 (above), consists of three core areas: data 

gathering, strategy analysis, and testing results. Each section draws from the lessons 

learned from other semantic Web research. Over the next few chapters, I explain in detail 

the specifics of each phase of the workflow and how prior investigation guided my hand. 
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IV. GATHERING OF DATA 

To fully vet out some of the basic tenets of this study, I required a large amount of data. 

The data would serve as both a learning set and a test set for all applied strategies. 

Therefore, I needed to define exactly what kinds of data I required and how I aimed to get 

them. Once identified, I needed to collect and store this data to allow for analysis and 

testing. This chapter covers how I determined which data to pull, how I physically 

acquired it, and how I stored and organized it to facilitate analysis. 

IDENTIFYING DATA NEEDS 

My data needed to represent what an active trader finds useful during short-term trading. 

This meant I wanted to follow companies whose stock traded frequently and consistently 

without the trade causing significant movement in price (i.e., they had market liquidity).  

With advice from experienced market technologists, I narrowed the pool of available 

companies down to the one thousand stocks in the Russell 1000 Index. These stocks 

represent the largest (by total market capitalization) one thousand companies in the U.S. 

equity market and account for approximately 90% of this market 

(http://www.russell.com/Indexes/data/fact_sheets/us/Russell_1000_Index.asp). 

News articles provide the content that I want to semantically correlate with each other. 

They feed the analysis engine and drive each semantic strategy. To that end, once I 

refined the scope of companies I began polling for news data. For eight months, I nightly 

iterated over each of the one thousand securities and requested news related to that 
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company from available Web services (www.google.com/finance/company_news). Each 

news item contained a link to the body which I subsequently downloaded, integrated into 

my news object, and stored to disk.  

Even though I asked for news articles for a particular company, I discovered that the 

provider could associate the article with many companies. For example, I could receive 

the same news item for stock MSFT (Microsoft) as I did for AAPL (Apple) if the news 

item spoke of the entire technology sector. To keep from storing duplicates, I keyed the 

articles by a combination of source, title, and publication date. 

When analyzing, I further restricted this pool to a single, global news agency: Reuters. 

Their strict policy toward advocating journalistic objectivity 

(http://handbook.reuters.com/index.php/Main_Page) helps negate any potential down-

stream bias toward semantic analysis. In addition, by choosing one provider, and thus one 

formatting style, this allowed me to minimize parsing oddities and best extract the news 

from the extensive page markup.  

Unlike all other data collected during the study, news items were time-sensitive. In other 

words, I could not request news for AAPL for a particular date. So, if I missed a day’s 

news, I could not go back and retrieve it specifically. This required a nightly task to run 

the data acquisition program fired by the built-in Windows scheduler. 

THE BIG PULL 

My project includes the objective “scoring” of test results by comparing how a predicted 

effect would change a stock’s price. I researched many services that provide delayed14  

                                                
14 at least a 15 minute delay 
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stock price data and found many (google.com/finance, yahoo.com/finance, etc.) that 

provided free quotes, but only per day/week/month. I needed the ability to get prices 

throughout a trading day. After a few consultations with some experienced trading 

technology specialists, I decided on an affordable15 premium service that provided all the 

price information I would need. 

This service (www.tradingphysics.com), allowed prices as granular as per second in the 

form of a “ticker” object. This ticker contained the average buy and sell prices for the 

time duration specified. In my study, I chose a five-second ticker interval. I knew I would 

initially measure results in minutes but may wish to zoom in somewhat, so five-second 

slices split the difference between flexibility and space/speed. 

Once I finished the nightly pull of news items, I would examine the data to find each 

item’s date of publication and company affected. I then contacted my market data pro-

vider and pulled tickers for the given date for the given company. I then filtered down the 

results to include only those that occurred during New York Stock Exchange (NYSE) 

trading hours (0930 to 1600 Eastern). Even so, these tickers took up the vast majority of 

space relative to any other data type in the project (over 47 million rows). 

THE DATA MODEL 

Storing all the data necessary for the project required a data model to define relationships 

and the shape of data. As stated previously, this project used Microsoft’s ADO.NET 

Entity Framework (EF). This allowed me to abstract the relational schema of the data on 

the database and present a conceptual schema to my program.  

                                                
15 $20 per month 
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For example, the Exchange schema has a one-to-many relationship with the Company 

schema (one Exchange can have many Companies). Entity Framework presents this 

relationship to the programmer in its fully hydrated form as an aggregate root. That is, 

my Exchange object contains an enumerable property called “Companies” that represent 

this one-to-many relationship. 

var myExchange = databaseContext.Exchange.Where( x => x.Name == “NYSE”); 

var nyseCompanies = myExchange.Companies; 

RELATIONS (ENTITIES) 

The three main actors, or entities, are Companies, News Items, and Tickers. A secondary 

entity, NewsToCompanies, manages the many-to-many relationship between a News 

Item and a Company. Another entity for Exchange helped with some grouping, but was 

largely unused. 
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Figure 0.1 

The diagram above (figure 4.1) closely resembles an Entity-Relationship (ER) model but 

it has some special distinctions. At the bottom of each entity is a list of “Navigation 

Properties.” These allow the program to traverse forward and backward through relation-

ships without having to do any JOIN operations. For example, if I had a reference to a 

particular company, I could find all the news items associated with that company by the 

following code: 
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List<NewsItem> newsItems = company.NewsToCompanies.Select(x => x.NewsItem); 

 

Under the covers, Entity Framework creates SQL that includes the proper JOIN state-

ments to get the data I’m after. 
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V. DATA ANALYSIS 

THE QUANTITATIVE TRADING MODEL 

My data collection process (SNAP) now allows me to put together and test the strategies 

gleaned from various top-down semantic Web analyses. Similar to other many algo-

rithmic (or quantitative) traders, this study utilizes three logical components: 

1. A data stream component 

2. A strategy component 

3. An execution component 

These three components correspond to SNAP workflow sections Data Gathering, Match-

ing/Prediction Engine, and Trade Execution Simulator, respectively. Together, these 

components provide a “proving ground” for any strategies I may wish to test. Strategies 

that fare well could be applied to a real-time matching engine. Those that fare poorly 

could be adjusted further or discarded. For now, I explore how the components work 

together to test our strategies. 

My data becomes “streamed” as I consume it, sequentially, over time. Thus, my collec-

tion of news items becomes a feed in the order it originally arrived. The strategy 

component takes my semantic analysis and matches streamed news with historic news to 

predict likely outcomes. Finally, an execution component “realizes” my prediction 

against real market prices. My testing model achieves this by splitting my input into two 

sections - a training set and a test set. 
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Figure 0.1 

The diagram above (Figure 5.1) illustrates how I take my news data and divide them into 

two distinct groups. Common to many trading models, I am setting up an “in-sample” 

testing environment where a standard body of data can train strategic models (Narang, R. 

K.). I can then test these predictions against another set of data, either live or recorded, to 

see if it yields any profits. This portion of the testing phase is called “out-of-sample” 

testing. 
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Unlike many quantitative models, this study differs from most black-box trading research 

in that my prediction strategies come not from analyzing the learning set of data, but from 

preparing it for matching. This preparation involves special parsing and indexing to allow 

for near real-time lookup. The in-sample data set becomes both a target for matching out-

of-sample data and a means of outcome prediction. That is, based on the news match, I 

can forecast how the price should react.  

This study applies three semantic “strategies” garnered from published academic research 

on Web service composition: 

1. A simple, textual matching that uses vector-space modeling 

2. A more complex version of the first that uses a basic “spread activation” on top of 

vector-space modeling 

3. A completely random association of data to function as our test set 

STRATEGY ONE: SIMPLE TEXT MATCHING 

The root of all the my semantic strategies can be stated as follows: given a news item 

from “out-of-sample” stream, match it to the single, most semantically similar news story 

from an “in-sample” set. Then, look up how the in-sample match affected stock prices 

when it was originally published and use the price change as a predictor for the new news 

item. The only difference between my strategies will be how I match the news articles. 

Simple, textual analysis can take the form of a Regular Expression search, such as the 

pattern matching of Ngu, Rocco, Critchlow, & Butler’s work in Bioinformatics (26). 

Similarly, the keyword matching of Schumaker & Chen (18) and Rocha, Schwabe, & 

Poggi de Aragao (22) demonstrate that an effective semantic matching strategy does not 
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require extensive and complicated algorithms as long as the user can work within a 

known domain. Since I know the confines of my domain (financial news), I can directly 

apply their techniques. 

My simple matching process takes in a news article and runs the text through a prepara-

tory analyzer to normalize and remove stop words such as “a”, “for”, “of”, and a couple 

dozen more (24). The analyzer then feeds the remaining stream of words into a Lucene-

powered matching engine that utilizes a combination of vector-space modeling and 

straight Boolean modeling to both find and rank (score) any matches. 

For example, an out-of-sample (new) news article contains “Mega Corp. announced that 

the board of directors of the company increased the company’s quarterly dividend rate 

25% to $0.10 per common share from $0.08 per common share.” This text, after remov-

ing stop words and normalizing, would look something like “Mega Corp. announce board 

director company increase company quarterly dividend rate 25% $0.10 common share 

$0.08 common share”.  

This would likely trigger a match against an in-sample (previously seen) news article that 

started out with “Zappum Electric announced that it has declared a regular quarterly cash 

dividend of $0.46 a share on the company's common stock, increasing the dividend 9.5% 

from the previous $0.42 a share.” and parsed down into “Zappum Electric announce 

declare regular quarterly cash dividend $0.46 share company common stock increase 

dividend 9.5% previous $0.42 share”. 

This leads us to my first controllable parameter to fine-tune my strategy: match-score. By 

using a minimum score filter, I can eliminate noise and dial in better matches. This, in 
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combination with the other adjustable parameters, allows me to balance my results to 

maximize potential profit. I will re-visit this concept later in the study. 

Once I determine our matched set of news items, the analyzer queries market data for the 

date of publication and symbol affected16. I look at what the stock’s price was at the 

moment of publication and capture this. Next, I capture the price at various time-spans 

after publication (1m, 3m, 5m, 10m, 20m, & 45m). I captured and stored all this informa-

tion for the particular strategy for later testing. 

STRATEGY TWO: SYNONYM SETS AND SPREAD ACTIVATION 

The first strategy keys on words and their frequency and location. What if I could apply 

the same strategy to the meaning behind the word? I can approximate this by transform-

ing keywords into synonyms, that is, words that are interchangeable with the keyword, 

both lexically and semantically. I’ll not replace the original keyword, instead we will 

augment it. 

For example, the statement “quick brown fox” (I have already lost the word “The” to the 

stop-word analyzer) feeds into a synonym engine that transforms the phrase. The engine 

then iterates over the words and creates cognitive synonyms (synsets) and injects them 

into the stream. After processing the first word in our phrase, my output may look like 

“quick|fast|rapid brown fox.”  

Thus, if I had a news article enter the system that spoke of “farming,” I would have a 

high likelihood of matching another article about “agriculture” due to one including the 

other in its synset. In the simple keyword version, these two articles would have to only 
                                                
16 To minimize complexity, I added a filter to process news items that only affected one company. Remov-
ing this filter is worthy of exploration in a future study. 
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rely on enough common words to trigger an association. This hybrid spread-activation 

technique (22) should more closely model how humans connect concepts between similar 

text. 

Implementing an engine to spread out semantics from an input stream involves an 

intermediate searching step. This interposed search utilizes an extracted version of 

WordNet - a system developed at Princeton University’s Cognitive Science Laboratory, 

driven by psychology professor George Miller. WordNet creates a network of “meaning-

fully related words and concepts” (27) and advertises itself as “a useful tool for 

computational linguistics and natural language processing.” 

Extracted as a lexical database, the WordNet component allows me to create a second-

stage input that contains not only the original keywords, but all their semantic cousins. 

This, admittedly large, news item could now be fed into the same Lucene matching 

engine as in our simple case. I collected matches and their related scores and followed the 

same path to generate outputs in the same form as our first strategy. 

STRATEGY THREE: RANDOM MATCHING 

The last strategy in the study most closely resembles the earlier-mentioned dart throwing. 

This matcher takes an input news item and pairs it with a random news item from the in-

sample set. It makes predictions based upon how the price of the in-sample item moved 

and relates these to the input item. I repeat this matching numerous times to smooth the 

distribution and composed outputs that matched the other strategy results. 

A random set gives the study a baseline to gauge performance. In his best-selling per-

sonal finance book, economist Burton Malkiel quite cleverly wrote that “a blindfolded 



 
 

37 
 

monkey throwing darts at a newspaper’s financial pages could select a portfolio that 

would do just as well as one carefully selected by experts.” (28) The random strategy is 

our monkey, and he has made his picks; let’s see how they fared against the others. 
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VI. EXECUTION ENGINE 

Once I produce the outputs, I can begin to test the predictions. My out-of-sample data set 

now becomes important as I “score” the matches with potential profits or losses. And, 

whether the strategy makes or loses money determines how effective it is. 

5587,2356,33.11000,‐0.000319081046585832801531589,‐

0.000319081046585832801531589,0.0009572431397574984045947671,0.001595405232929

1640076579451,0.0041480536056158264199106573,0.0063816209317166560306317805,0.

0003020235578375113258834189,0.0003020235578375113258834189,0.0009060706735125

339776502567,0,0.0009060706735125339776502567,0.0018121413470250679553005134 

 

5596,3371,37.88250,0,0,0,0,‐0.0103029995432167690199462011,‐

0.0103029995432167690199462011,‐0.0214478981059856134098858312,‐

0.0074572691876196132778987659,0.0065333597307463868540882993,0.02157988517125

32171847158978,‐0.0029697089685210849336764997,‐0.0048175278822675377812974329 

 

5659,3495,58.00000,0.0016621054552089034847655537,0.00218938149972632731253420

91,‐0.0004561211457763181901112936,‐

0.0017040686006203247582557927,0.0005473453749315818281335523,‐

0.0005473453749315818281335523,0.0006896551724137931034482759,0,0.000344827586

2068965517241379,0.0012068965517241379310344828,‐

0.0013793103448275862068965517,0.0005172413793103448275862069 

Figure 0.1 
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My outputs come from files with rows of data similar to figure 6.1, above. The columns 

represent a serialized form of an AnalysisData object. This class represents: 

• the Id of the “new” news item 

• the Id of the matching news item 

• the price of the stock at the time of the event 

• the projected price changes over time intervals (1, 3, 5, 10, 20, & 45 minute) in 

percent 

• the actual price changes over time intervals (1, 3, 5, 10, 20, & 45 minute) in per-

cent. 

Based on the AnalysisData input, the Execution Engine makes a simple decision: buy, 

sell, or do nothing. It determines this choice based upon the second of our controllable 

parameters: percentage threshold. This allows the engine to ignore changes that are 

sufficiently close to zero and choose the “do nothing” option. In my model, this has little 

bearing except to dampen both profit and loss somewhat. In the real world, where trading 

costs become a “friction” for every trade, a user may want to prohibit trading that pro-

duces less profit than the cost of the trade itself. 

RISK MANAGEMENT 

Common to most quantitative trading models (29), the execution engine uses size limit-

ing to mitigate market risk. Often called Equal Position Weighting, this rule says that “if 

a position is good enough to own, no other information is needed.” This greatly simplifies 

the decision making tree that the engine needs to traverse. 
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In this engine, I set the size of the order to one hundred shares, regardless of price. A 

“common,” or “round” lot17 in securities trading, my one-hundred-share-size is either 

purchased or shorted (selling assets borrowed from a third party) at the price at the time 

of the news event. This gives the user a “position” in the stock. The only task remaining 

is to unload the position after the price moves. 

REALIZING THE PREDICTION 

My AnalysisData provides predicted price movements at various time intervals after 

entering into the position. In a real-world model, I would now feed my instructions 

(buy/sell/no-op) to an execution engine connected to an electronic market. In my test 

environment, I will use a simple execution emulator that instantly actualizes both buys 

and sells at exactly our price. 

Once the engine executes our execution instructions, I decide how long to hold on to our 

new positions before realizing any profit/loss. This is the third controllable parameter in 

the study: Time-to-Realize. 

My predictions provide intervals at which I can realize our profits/losses: 1m, 3m, 5m, 

10m, 20m, and 45m. As this calculation is straightforward and fast, the execution engine 

provides results for all six intervals. Likewise, I can quickly calculate profit and loss for 

each percentage threshold level and produce outputs to demonstrate where real-world 

profitability “sweet spots” may exist. 

** Threshold Percentage: 0.08500% 

Action at One minutes yields $0.0000 profit. 

                                                
17 purchase amounts below 100 shares are called an “odd lot” 
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Action at Three minutes yields $148.1056 profit. 

Action at Five minutes yields ($49.3685) profit. 

Action at Ten minutes yields ($21.9416) profit. 

Action at Twenty minutes yields ($82.2809) profit. 

Action at Forty‐Five minutes yields ($416.8899) profit. 

Figure 0.2 

The engine produces output similar to the above Figure 6.2, where we can see that, for a 

particular threshold percentage of 0.085%, this strategy would lose money if the black 

box holds the position longer than three minutes. I took many output snapshots at a range 

of values for our controllable parameters. The next chapter discusses and analyzes these 

results. 
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VII. CONCLUSIONS 

STATEMENT OF RESULTS 

I conducted four sample runs while adjusting the minimum match-score with values 0.0, 

0.25, 0.5, and 1.0. I experienced a sharp drop-off of all match-scores just beyond the 1.0 

mark and those runs did not yield significant data. Other strategies began to yield little or 

no data as the match-score increased. I will discuss this below. 

Each run used the Simple Analyzer and then the Synonym Analyzer. A run with random 

news matches provides a baseline contrast. With each match-score change, the results 

shifted somewhat. Figures 7.1 through 7.4 (below) show potential profit/loss at each 

position hold-time. 



 
 

43 
 

 

Figure 0.1 

Simple Matching 

Random Matching 

‐$8,000.00 
‐$6,000.00 
‐$4,000.00 
‐$2,000.00 

$0.00 
$2,000.00 
$4,000.00 

1 min.  3 min.  5 min.  10 min.  20 min.  45 min. 

Simple Matching  $0.00  ‐$93.76  $440.87  ‐$146.96  ‐$65.31  ‐$244.93  ‐$1,240.97 

Synonym Matching  $0.00  ‐$136.73  ‐$1,157.86  $385.95  $171.54  $643.26  $3,259.17 

Random Matching  $0.00  ‐$651.72  ‐$2,324.91  ‐$774.97  ‐$344.43  ‐$1,291.62 ‐$6,544.20 

SNAP Predic+on Results 
(Match‐Score Threshold 0) 
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Figure 0.2 

Simple Matching 

Random Matching 

‐$8,000.00 

‐$6,000.00 

‐$4,000.00 

‐$2,000.00 

$0.00 

$2,000.00 

1 min.  3 min.  5 min.  10 min.  20 min.  45 min. 

1 min.  3 min.  5 min.  10 min.  20 min.  45 min. 

Simple Matching  $0.00  ‐$102.07  $420.78  ‐$140.26  ‐$62.34  ‐$233.77  ‐$1,184.42 

Synonym Matching  $0.00  ‐$6.39  $5.81  $4.65  $2.69  ‐$11.62  ‐$18.59 

Random Matching  $0.00  ‐$651.72  ‐$2,324.91  ‐$774.97  ‐$344.43  ‐$1,291.62 ‐$6,544.20 

SNAP Predic+on Results 
(Match‐Score Threshold 0.25) 
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Figure 0.3 

Simple Matching 

Random Matching 

‐$8,000.00 

‐$6,000.00 

‐$4,000.00 

‐$2,000.00 

$0.00 

$2,000.00 

1 min.  3 min.  5 min.  10 min.  20 min.  45 min. 

1 min.  3 min.  5 min.  10 min.  20 min.  45 min. 

Simple Matching  $0.00  ‐$87.42  $308.27  ‐$102.76  ‐$45.67  ‐$171.26  ‐$867.71 

Synonym Matching  $0.00  $0.28  $0.10  $0.46  $0.91  $2.69  $2.69 

Random Matching  $0.00  ‐$651.72  ‐$2,324.91  ‐$774.97  ‐$344.43  ‐$1,291.62 ‐$6,544.20 

SNAP Predic+on Results 
(Match‐Score Threshold 0.5) 



 
 

46 
 

 

Figure 0.4 

A couple of patterns warrant attention. First, the Simple strategy appears to have a 

consistent bump at the three minute mark. I expect the market to move in the direction of 

the news, and then recover. These results gently support that theory. 

Secondly, the Synonym strategy gave promising early results with its best showing 

occurring in the lowest match-score set. However, its performance quickly degraded as 

the match-score threshold increased. A quick look into the raw (pre-execution) Analysis 

Data helps explain the outcome. 

Each data run produced Analysis Data files (Figure X in chapter six). Lower matching 

score thresholds mean more results. Toward the high end of the match-scores (at 1.0), the 

Synonym Matcher found no matching news items and produced empty output. This 

explains the zeros in the Profit/Loss column at the 1.0 mark. 

Simple Matching 

Random Matching 

‐$8,000.00 

‐$6,000.00 

‐$4,000.00 

‐$2,000.00 

$0.00 

$2,000.00 

1 min.  3 min.  5 min.  10 min.  20 min.  45 min. 

1 min.  3 min.  5 min.  10 min.  20 min.  45 min. 

Simple Matching  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $1,916.34 

Synonym Matching  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00 

Random Matching  $0.00  ‐$651.72  ‐$2,324.91  ‐$774.97  ‐$344.43  ‐$1,291.62 ‐$6,544.20 

SNAP Predic+on Results 
(Match‐Score Threshold 1.0) 
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As the threshold increases from 0.0 to 1.0, the analyzer recorded fewer and fewer 

matches. Figure 7.5 (below) illustrates the data drop-off 

Match-Score Threshold Simple output size 
(KB) 

Synonym output size 
(KB) 

0.00 115 120 
0.25 108 2 
0.50 73 1 
1.00 37 0 

Figure 0.5 

PROBLEMS LEFT UNRESOLVED 

Clearly, the poor output of the Synonym strategy with higher matching score thresholds 

demands some further attention in the future. This strategy demonstrated promising 

results when left to run unrestricted. The match-score filter may not be the best way to 

refine these strategies. 

For the Synonym strategy, if I had the resources, I would fine tune the matching of the 

expanded synset with the original article. I would like to explore expanding the in-sample 

articles as well, and then applying a simple matching strategy over both modified sets.  

The positive showing of the Simple matching strategy at short intervals shows promise 

that an uncomplicated approach may be advantageous over a complex solution. What 

separates this study from a more definitive one is the amount of sample data. 

As mentioned previously, the large volume of data became cumbersome as the study 

progressed. However, I need more data to further vet all approaches (Simple, Synonym, 

and beyond) and I’ve reached the capacity of most personal workstations. 
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For future research, I recommend a distributed database over a network of (relatively) 

small servers. If I were to mold the study in this direction, I would explore fast, distrib-

uted, in-memory databases like MongoDB or CouchDB. Faster data access would allow 

tighter cycles of experimentation. Current test runs border on the tedious with an over-

the-counter computer system. 
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