
To appear in Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2009), July 2009.

An Economical Approach to Usability Testing

Carl J. Mueller, Dan Tamir, Oleg V. Komogortsev, Liam Feldman

Texas State University-San Marcos

{carl.mueller, dt19, ok11, lf1081}@txstate.edu

Abstract

Many software engineers consider usability

testing as one of the more expensive, tedious and least

rewarding tests to implement. Making usability

testing less expensive and more rewarding requires

having results that pinpoint issues in the software and

do not require expensive consultants and facilities. To

accomplish these goals this paper presents a novel

way of measuring software usability and an approach

to designing usability tests that does not require

external consultants or expensive laboratory facilities.

The usability testing approach discussed in this paper

also permits testing earlier in the development

process. One of the key elements to this technique is

the use of traditional testing concepts and techniques

such as scenario based testing to measure productivity

and learnability of the subject. By constructing test

cases or tasks to measure the learnability of the

application, the developer has a way to measure the

quality of both the test and the software.

1. Introduction

A 2007 survey conducted of Swiss software

engineers found that only 37.9% conducted usability

tests [17]. Of the 62.1% not conducting usability tests,

the Swiss study found that 7.9% of respondents find

usability tests useless and 40.9% cited them as useful;

yet they did not conduct usability testing. The authors

state that they did not investigate the reason for this

and other usability deficiencies but believe them to be

a result of “poor awareness of the importance of UIs”

(User Interface) [17]. For software engineers, not

understanding the importance of user interfaces

implies that they are not aware of the growing volume

of reports about user dissatisfaction and product

disasters [4, 9], and all the material written to improve

user interface design. Rather than a lack of

understanding, it is possible that software engineers

believe that usability testing is of limited value

because:

1. Usability testing is expensive. It requires an

expert to construct, conduct, and evaluate the

tests, dozens of subjects to participate and

expensive dedicated laboratory facilities to

obtain good results.

2. Usability testing done at the end of the

development process can cause serious delays

in deploying the product.

3. Usability testing results frequently only

indicate that a problem exists but not what is

causing the problem.

Many of the methods of evaluating the usability

of a software application rely on measuring the time to

complete a task [1, 2, 11]. Time to complete a task or

time on task is a very good approximation of user

productivity. Time on task is a measurement that is

easy to make, but it has a number of components that

are difficult to separate. For example, a high time on

task could be caused by a poor system, network

performance, or interface design. Measuring usability

in terms of user-effort eliminates some of these system

issues, resulting in high time on task values, and

permits developers to focus on the interface design.

It is possible to obtain significant test results with

a relatively low cost approach to usability testing

using normal software testing techniques. For

example, in researching a novel effort-based measure

of usability [8], researchers constructed a usability test

identifying two missing functions, a Graphic User

Interface (GUI) issue, and a performance issue in two

commercial applications, without expensive

consultants, facilities and equipment. It was possible

to produce these results because of the effort-based

view of usability and the use of accepted functional

testing techniques.

2. Effort-based Usability

Although an effort-based usability metric

applicable to this model is in its early stages of

development, most of the common factors that relate

to a user completing a task are well identified. Easiest

sources of effort to identify were the mechanical

To appear in Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2009), July 2009.

sources of effort when working on a computer, such as

mouse and keyboard activity and mouse-keyboard

transfer operations. It is a little more difficult to

identify and quantify some of the other factors such as

eye effort and mental effort. All of the effort, 𝐸, to

complete a computer task is defined by the following

vectors:

𝐸 =
𝐸𝑚𝑒𝑛𝑡𝑎𝑙

𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝐸𝑚𝑒𝑛𝑡𝑎𝑙 =
𝐸𝑒𝑦𝑒𝑚𝑒𝑛𝑡𝑎𝑙

𝐸𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑛𝑡𝑎𝑙

𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 =

𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝐸𝑒𝑦𝑒 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝐸𝑜𝑡ℎ𝑒𝑟_𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

Where:

𝐸𝑚𝑒𝑛𝑡𝑎𝑙 amount of mental effort to complete

the task.

𝐸𝑒𝑦𝑒 _𝑚𝑒𝑛𝑡𝑎𝑙 amount of mental effort necessary to

move and focus the eyes to complete

the task.

𝐸𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑛𝑡𝑎𝑙 amount of unspecified mental effort

necessary to complete the task.

𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of physical effort to

complete the task.

𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of manual effort to complete

the task. Manual effort includes, but

is not limited to, the movement of

fingers, hands, arms, etc.

𝐸𝑒𝑦𝑒 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of eye physical effort to

complete the task.

𝐸𝑜𝑡ℎ𝑒𝑟_𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of unspecified physical

effort to complete the task.

It is relatively easy to acquire mouse and

keyboard activity and mouse-keyboard transfers to

estimate the physical effort (𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙). There

are a number of methods to convert eye activity

measured by an eye-tracking device into an effort

approximation (𝐸𝑒𝑦𝑒 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙).

Measuring cognitive load or mental activity is still

an active research topic and will probably remain that

way for quite some time. One approach to measuring

mental effort currently under investigation is to

measure eye movement and pupil diameter Providing

an accurate measure of mental effort (𝐸𝑚𝑒𝑛𝑡𝑎𝑙) is still

several years in the future.

Consider the following example. Assume a set of

𝑛 subjects selected at random complete a set of 𝑘

tasks. Further, assume that the subjects are computer

literate but unfamiliar with the application under

evaluation. The objective of each task is to make

travel reservations, and each task requires about the

same effort. The set of k tasks have the same scenario

with different data and different constraints.

Typically, as subjects become more familiar with an

application, the time to complete tasks with the same

scenario becomes shorter and shorter [6]. When

plotting the Time-On-Task (TOT) averages (𝑇𝑎𝑣𝑔) for

these subjects, a curve with a strong fit to a power law

curve is said to reflect learning or represents a learning

curve [6, 13, 16].

TOT is composed of a number of elements

including a number of software related characteristics

such as software performance and the effort expended

by the subjects to complete a task. Like time, the

effort to complete a task should decrease at a similar

rate. Therefore it should be possible to construct a

learning curve by plotting average effort (𝐸𝑎𝑣𝑔)

expended for a task with similar properties to those

observed in a curve based on Time. Figure 1

illustrates a hypothetical learning based on average

effort to complete a set of tasks with a common

scenario.

It is assumed that learning, to an acceptable level,

occurs when the average effort (𝐸𝑎𝑣𝑔) is within some

percentage of an expected level of effort (𝐸𝑒𝑥𝑝).

Expected effort (𝐸𝑒𝑥𝑝) is the effort that the interface

designer expects an expert to expend to complete

tasks.

The tasks where the subject’s effort reaches this

acceptable level of performance is the learning

point 𝐿𝑃 . Summing the average task duration to the

left of the learning point 𝐿𝑃 indicates how much

time 𝐿𝑇 the average subject requires to reach an

acceptable level of performance. Data to the right of

learning point 𝐿𝑃 describes the amount of effort

required to accomplish a task using a specific software

application.

T
im

e
 o

r
E

ff
o

rt

Tasks

Eavg

Eexp

Lp

LT

Figure 1. Hypothetical Effort Model

To appear in Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2009), July 2009.

Even though this research uses extensive data

logging facilities and a sophisticated eye-tracking

device, this paper presents results from only those

tools and techniques that are available to all software

engineers.

3. Experiment

3.1 Planning

To determine if the notion of effort-based

usability evaluation has merit, the usability of two

web-based travel reservation systems, called System A

and System B, were used as the target applications in

this paper. Twenty (20) subjects volunteered to

participate in the experiment, ten (10) subjects for

each system. There is much controversy on the

number of subjects necessary for a usability test [3].

Nielsen’s recommendations for the number of subjects

for logging actual use protocol calls for 20 subjects

[11]. A web source, also by Nielsen, suggests six

subjects [12]. In the travel reservation experiment, all

of the subjects were undergraduate students at Texas

State University, with limited or no background in

software development, ranging from 18 to 35 years of

age.

3.2 Execution

Authorization to conduct human subject testing

was granted from the Institutional Review Board of

Texas State University-San Marcos. The protocol for

this research further specified strict procedural

guidelines in order to control for an unusually large

number of intrinsic variables. To ensure that

facilitators adhered to the test protocol, they were

provided with detailed written instructions.

Facilitators kept an observation log in order to validate

the test protocol. Subjects also completed a post goal

questionnaire. These two items were very useful in

later analysis.

A test session consisted of first screening the

subjects to ensure that they qualified for the

experiment, and then, if qualified, giving them the first

task based on the Goal/Task Template shown in

Figure 2. After the completion of each task, the

subject completed a questionnaire capturing their

feeling about the task. Because the experiment was

using eye-tracking equipment that required subjects to

sit in a fixed position, they were given a short break.

This process continued until the subject completed all

10 tasks in the protocol.

At the beginning of the evaluation of System B, a

subject discovered that System B did not provide a

flight to one goal’s destination. The solution was to

change the destination of the goal and eliminate the

data from the subject that discovered the defect. This

defect was a result of insufficient testing of the goals.

3.3 Results

To paraphrase Glenford Myers [10], a good

evaluation is one that finds issues. The experimental

results met all of the researcher’s expectations and

provided a few surprises. First, it was possible to

identify specific functionality and interface design

issues. Second, the results clearly indicate that the

techniques and procedures used are suitable for

generating data to make a comparison between two

implementations of the same application.

In a review of the post-goal questionnaire and the

facilitator logs, it became apparent that a number of

subjects felt that they failed to meet all of the

requirements of the task. The two most frequently

cited difficulties on both systems were the distance to

the conference site and the budgetary requirements.

Subjects were not allowed to launch applications, so

subjects did not have access to a calculator or to a

mapping application like Map-quest®.

Dr./Ms./Mr. ____________ is presenting a paper at the

______________ conference being held in

_______________ at the _________________. He/she

is presenting his/her paper at 10A.M., but he/she must

be there for the opening session at 8:30 A.M. The

conference will end at 6P.M. on ____________ and

Dr./Ms./Mr. _____________ must be there for the

closing session.

Dr./Ms./Mr. ________________ is traveling from

______________, and would like a non-stop flight to

___________________.

The conference is at the __________________ hotel on

___________ to ____________, but Dr./Ms./Mr.

__________ feels that this hotel is outside of the range

of his/her budget of ________ for the travel. Because

of the high cost of the hotel he/she wants to stay at a

hotel within ____________ miles of the conference

center with the following amenities:

 1. ___________________________

 2. ___________________________

 3. ___________________________

 4. ___________________________

He/she will need a car to get around at the conference

city. Again, because of budget constraints, he/she does

not want to spend more than ________/day for the car.

Figure 2. Goal/Task Template

To appear in Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2009), July 2009.

One interesting note about the facilitator logs and

post-task questionnaires was that they did not always

agree. Some subjects would inform the facilitator

about any difficulties they were having but would not

record them on the questionnaire. Subjects were not

aware that the facilitators were required to record any

interaction with a subject. The converse was also true.

Without the ability to compare records, it would have

been difficult to establish a pattern to the challenges

faced by the subjects.

From the average length of each task shown in

Figure 3, it is apparent that it took subjects longer to

accomplish the same task with System A than it did

with System B, indicating that System B is more

efficient or productive than System A. The first

question that comes to mind was how two applications

with almost identical interfaces could have such

differences in the average task duration.

On investigation, it was discovered that System

A’s web pages were designed with frames; and in the

frame on the far right, they used animated images for

advertising. Although the advertising may bring

additional revenue, it does make the system more

difficult to use and resulted in not only a looser fit to

the learning curve, but also System A, based on the

data shown in Figure 3, is less efficient.

Another observation from the facilitator’s logs

was that the response time of System A was erratic.

According to the logs, some responses were

immediate and others long enough to cause the subject

to question if the system was running. From these

results, it is not possible to determine which problem

is the major contributor to the problem. Ideally, the

development team would address both problems and

then re-test.

One of the more exciting parts of the experiment

was when the trends for both systems were such tight

fits to an exponential decay curve as predicted in the

mathematical model of the learning curve [13]. With

both systems having a coefficient of determination

(R2) above .7, it is possible to say that the test

demonstrates how the subjects learned to use the

software during the experiment. An R2 of 0.8792

indicates an almost ideal fit to the learning curve

model. It is possible to say that based on the data in

Figure 3, System B is both more efficient and is easier

to learn than System A.

It was expected that subjects would master the

software in about four (4) or five (5) tasks. From the

data shown in Figure 3, it was clear that the subjects

did not begin to master the system until about task

seven (7) or eight (8).

4. Designing a Usability Test

There are a number of widely accepted references

for designing a usability test [5, 11, 14, 16]. These

references provide guidelines on every aspect of

usability testing from the laboratory design to how to

report results. These references, however, do not

robustly address how to focus the test on specific parts

of the system, how to create a goal or task, and how

many goals or tasks to evaluate a specific part of the

system. Like any other type of test, the process for a

usability test consists of preparation, execution, and

analysis phases.

One of the first steps in constructing a usability

test is to establish the usability requirements for the

software under evaluation. At a minimum, clients

should provide a profile for each user of the

application and requirements for the In Use Quality

characteristics and learnability [2]. These user profiles

should include the same characteristics that are used to

hire a person to fill that position and would include

education, skills with a rating of expertise, etc. It is

possible to provide user profiles at a system level, but

the effectiveness, productivity/efficiency and

satisfaction may vary by task. Describing the systems

functionality using Unified Modeling Language

(UML) use cases provides a focus for both specifying

requirements and evaluating the software [15]. It is

only logical to assume that different tasks will take

more or less effort than other tasks; therefore, each use

case should have its own set of requirements.

After establishing requirements for each use case,

the next step is to design a set of goals or tasks to

evaluate a specific use case. A popular method for

constructing a usability test is to “discover” some real

world situations and use them as the basis for

designing the goals [5, 11, 14, 16]. There are two

problems with the random collection of tasks

approach:

Figure 3. Average Task Length

To appear in Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2009), July 2009.

1. It does not permit the subject to “learn” how

to use the system before making a

measurement of usability.

2. It does not provide a focus for the software

engineer to diagnose the problems.

A better approach is to use a set of test cases or tasks

using a scenario test design technique [7]. Although

many say that this is just a common sense approach, it

is not widely recommended or discussed by the

authorities of usability testing [5, 11, 14]. To illustrate

the difference between the random selections of real

life situations, consider the use case described in

Figure 4 [15]. A random selection would probably

focus on the “place orders” use case. This is a good

choice because it is very highly used, but the

“establish credit” use is critical to the health of the

company. If the “establish credit” interface does not

meet the usability requirements of the organization, it

may result in customers receiving the wrong credit

rating.

Good testing practice requires test designers to

have one or more tests evaluating each of the

elements. 100% coverage is the only level of

acceptable coverage. To provide a thorough

evaluation of an application requires conducting a

usability test for each use case described in the

application, and using use cases as the focus for test

design provides a basis for measuring the adequacy of

the test. Selecting tasks at random will not guarantee

100% coverage of the use cases in an application.

Many human beings learn by repeating a task or

action a number of times. However, if tasks are the

same, subjects memorize the solution and do not learn

how to solve that class of problems. To address this

issue, the developer wants to create a series of tasks

that are different but based on the same scenario.

Developing these goals consists of a few steps:

1. Select a use case for evaluation.

2. Convert the input for the use case into a

narrative.

3. Identify important events, conditions, or

constraints and add their description to the

narrative.

4. Test the scenario on all the systems that are

under evaluation.

5. Replace the specifics of the scenario with

blanks or with an option list creating a

template. Figure 2 provides an example of a

goal template.

6. For each desired goal, convert the template

into a goal by filling in the blanks with valid

data and selecting a single occurrence from

each option list.

7. Test all of the goals on all of the systems

under evaluation.

Another question not well covered in the literature

is the number of tasks verses the number of subjects.

For this type of usability test, the literature suggests a

number of subjects from six (6) to twenty (20). With

this approach, it appears that more tasks with fewer

subjects produce good results.

Each usability test requires designing two forms:

qualification and task completion. Questions on the

qualification form should insure that a prospective

subject matches the profile specified in the

requirements. A task completion form provides the

subject an opportunity to record how they feel about

their work on the task. It should have some questions

to establish the subject’s well-being. If the subject is

tired or fatigued, it may be necessary to terminate the

session. Address this contingency in the test protocol.

Most authorities suggest expensive and elaborate

facilities to conduct the tests [5, 14]. According to this

research, the only thing that is necessary for a test

facility is a minimal number of distractions. A small

office or conference room is adequate. A cubical is

too noisy. Facilitators should have a watch or

stopwatch to record the time it takes to complete a

task, or this should be integrated into the test harness.

The largest external expense to implement the

tools and techniques discussed in this paper is the cost

of acquiring subjects. Compensation for subjects in a

university setting has a number of none monetary

alternatives. Unfortunately, in an industrial setting,

pizza is not a popular form of compensation, even

though it is sometimes used to compensate developers

for overtime. However, temporary agencies can

probably supply an adequate number of subjects

conforming to the user profile.

A small pool of about six (6) subjects permits

using this approach as part of the construction phase,

after the developers have completed their normal

testing or as part of an iterative development process.

Order Clerk

Supervisor

Posting Clerk

Account Receivables

place

orders

Post Cash

establish

credit

Extends

Extends

Figure 4. Use Case Diagram

To appear in Proceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference (COMPSAC 2009), July 2009.

When using this technique as part of the construction

phase with scenarios without any unusual conditions,

the test provides the designer with feedback about the

quality of the use case earlier in the development

process. Conducting a complete usability test is better

when the software is at its most stable.

5. Future Research

A large amount of data was gathered from logging

actual activity and eye tracking data, and the

researchers are still working with the data to develop a

metric to establish productivity in terms of learnability

and operability. A physiologist has been added to the

research team to determine how much effort a subject

expends when moving a mouse, pressing a key or

transferring from mouse to keyboard.

Another experiment in progress is an investigation

into the positioning of instructions and location of

push buttons. In this experiment, subjects enter data

or push buttons based on instructions that are located

at various distances. From this experiment, it may be

possible to establish estimates for eye effort based on

the distance between interface elements.

6. Conclusions

Using the use case based test case design

approach presented in this paper, it is possible to

reduce the cost of conducting a usability test by

eliminating the need for outside consultants and

expensive laboratory facilities. Outside consultants

add considerable insight to many usability issues but

also add a considerable cost. With this technique, the

largest external cost is compensation for six (6)

subjects.

Results of the research also show that measuring

effectiveness, productivity and satisfaction of an

application are insufficient to permit developers to

diagnose and prioritize correcting any issues found in

the test. Fixing all of the issues found in the validation

phase is not always a viable option because this

approach frequently introduces more defects into the

application than they repair.

Another advantage of this technique is that it

delivers a measure of learnability in addition to

productivity at no additional cost. Frequently

learnability is the one usability quality that end users

can provide a quantitative requirement. Learnability

affects how long it takes the end user to train existing

personnel on the new system. In addition, learning

time indicates how much training is necessary for new

staff.

7. References

[1] "ISO 9241-11 Ergonomic requirements for office

work with visual display terminals (VDTs) - Part 11:

Guidance on usability," International Organization for

Standardization, Geneve Switzerland1998.

[2] "ISO/IEC 9126-1:2001 Software Engineering-

Product Quality-Part 1: Quality Model,"

International Standards Organization, Geneva

Switzerland2001.

[3] Caulton, D. A., "Relaxing the homogeneity

assumption in usability testing," Behavior &

Information Technology, vol. 20, p. 7, 2001.

[4] Chartette, R. N., "Why Software Fails," in Spectrum:

IEEE, 2005.

[5] Dumas, J. S. and Redish, J. C., A Practical Guide to

Usability Testing. Portland, OR, USA: Intellect

Books, 1999.

[6] Hax, A. C. and Majluf, N. S., "Competitive cost

dynamics: the experience curve," Interfaces, vol. 12,

pp. 50-61, October 1982 1982.

[7] Kaner, C., "An Introduction to Scenario Testing,"

http://www.testingeducation.org/a/scenario2.pdf, date

retrived: December, 2008.

[8] Komogortsev, O., Mueller, C., Tamir, D., and L., F.,

"An Effort Based Model of Software Usability," in

2009 International Conference on Software

Engineering Theory and Practice (SETP-09)

Orlando, FL, 2009.

[9] Leveson, N. and Turner, C. S., "An Investigation of

the Therac-25 Accident," IEEE Computer, vol. 26 no.

7, 1993.

[10] Myers, G., The Art of Software Testing. New York,

NY: John Wiley & Sons, 1979.

[11] Nielsen, J., Usability Engineering. San Francisco,

CA, USA: Academic Press, 1993.

[12] Nielsen, J., "Logging Actual Use,"

http://www.usabilityhome.com/FramedLi.htm?Loggi

ng.htm, date retrived: December, 2008.

[13] Ritter, F. E. and Schooler, L. J., "The Learing Curve,"

in Internaiton Encyclopedia of Social & Behavioral

Sciences: Elsevier Science Ltd., 2001.

[14] Rubin, J. and Chisnell, D., Handbook of Usability

Testing: How to Plan , Design, and Conduct

Effective Tests. Indianapolis, IN, USA: Wiley

Publishing, Inc., 2008.

[15] Rumbaugh, J., Jacobson, I., and Booch, G., The

Unified Modeling Language Reference Manual.

Reading, MA: Addison Wesley Longman, Inc., 1999.

[16] Tullis, T. and Albert, B., Measuring The User

Experience: collecting, analyzing, and presenting

usability metrics. Burlington, MA: Morgan

Kaufmann, 2008.

[17] Vukelja, L., Müller, L., and Opwis, K., "Are

Engineers Condemned to Design? A Survey on

Software Engineering and UI Design in Switzerland,"

in NTERACT 2007 Rio de Janeiro, Brazil: Springer

2007.

http://www.testingeducation.org/a/scenario2.pdf
http://www.usabilityhome.com/FramedLi.htm?Logging.htm
http://www.usabilityhome.com/FramedLi.htm?Logging.htm

