

GPU Acceleration of a Genetic Algorithm for the Synthesis

of FSM-based Bimodal Predictors

Martin Burtscher
1
 and Hassan Rabeti

2

1
Department of Computer Science, Texas State University, San Marcos, TX, USA

2
Department of Mathematics, Texas State University, San Marcos, TX, USA

Abstract - This paper presents a fast GPU implementation

of a genetic algorithm for synthesizing bimodal predictor

FSMs of a given size. Bimodal predictors, i.e., predictors

that make binary yes/no predictions, are ubiquitous in mi-

croprocessors. Many of these predictors are based on fi-

nite-state machines (FSMs). However, there are countless

possible FSMs and even heuristic searches for finding good

FSMs can be slow when billions of predictions need to be

assessed. We designed such a search heuristic that maps

well onto GPU hardware. It is based on a multi-start genet-

ic algorithm. On our six traces, the resulting FSMs are 1%

to 29% more accurate than saturating up/down counters.

On a Kepler-based GTX 680, the CUDA implementation

evaluates 18 to 73 billion predictions per second, which is

14 to 18 times faster than a multicore version running on a

hex-core Xeon X5690 with hyper-threading.

Keywords: GPGPU, genetic algorithm, automated design,

finite-state machines, bimodal predictors

1. Introduction

Modern processors contain large numbers of finite-state

machines (FSMs), many of which are used as bimodal pre-

dictors. Such FSMs can be found in branch predictors [13,

15, 19], memory-disambiguation hardware [20], cache way

predictors [2], confidence estimators [9], and selectors in

hybrid predictors [14]. Their purpose is to improve perfor-

mance and/or reduce power consumption [17]. We use

FSMs to compress program execution traces in real time

[16]. In nearly all of these applications, the FSM has to

repeatedly make a 1-bit prediction, i.e., a bimodal predic-

tion, and is then updated with the true 1-bit outcome. E.g.,

for every branch instruction, an FSM might predict whether

it will be taken or not. After the branch has executed, the

FSM is updated with the true direction the branch took. The

goal is to make as many correct predictions as possible.

However, there are countless choices of FSMs and it is

generally unknown which FSM is the best for a given task.

An n-bit FSM holds n bits of internal state, which serves as

its ‘memory’. The 1-bit prediction is a function of the cur-

rent state, such as choosing one of the n bits. During an

update, the FSM transitions from the current state to a new

state based on the input (true outcome) bit. Conceptually, a

bimodal n-bit FSM implements a transition table like the

one shown in Figure 1, where the n bits of current state are

concatenated with the input bit to form an address (index)

to select a row in the table, which holds the next n-bit state.

As the boxed-in letters in Figure 1 illustrate, the transition

table consists of n × 2
n+1

 independent bits, yielding 2 ^ (n ×

2
n+1

) possible n-bit FSMs. Whereas not all bit assignments

result in meaningful FSMs (e.g., there are redundancies and

not every FSM can reach all states), the number of possibil-

ities grows super-exponentially with n. There are 16 possi-

ble 1-bit FSMs but 65,536 possible 2-bit and 281.5 trillion

possible 3-bit bimodal FSMs. Hence, using an exhaustive

search to determine the best n-bit FSM is not computation-

ally tractable on current workstations for n > 2.

Figure 1. State transition table of an n-bit bimodal FSM

A saturating up/down counter is a specific bimodal FSM

that works as follows. Its n-bit state is interpreted as an n-

bit value. When updated, the value is incremented if the

input bit is 1 and decremented otherwise. However, the

value is never incremented above 2
n
-1 and never decre-

mented below 0, i.e., it saturates at the minimum and max-

imum. The prediction is the most significant bit (MSB).

The saturating up/down counter is so called because it

counts the number of 0 and 1 outcomes that were encoun-

tered in the recent past. If there were many zeros, the count

is low and the MSB a ‘0’. Conversely, if there were many

ones, the count is high and the MSB a ‘1’. Hence, this FSM

essentially makes a majority prediction over the recently

seen events. The saturating up/down counter works well in

practice, which is why it is widely used. However, it has

known weaknesses. For example, it performs poorly on

sequences of alternating zeroes and ones. Also, it tends to

make the same prediction after a ‘1 1 0 1’ sequence as it

does after a ‘1 0 1 1’ sequence.

Whereas there is generally only one piece of logic that im-

plements the FSM in hardware, the n-bit state itself is often

replicated, resulting in an array of states, to improve the

prediction accuracy by retaining separate state for different

instructions, cache lines, etc. Some of the lower bits of the

program counter (PC) of the executing instruction are typi-

cally used to select an entry in the state array.

Since performing an exhaustive search for finding the best

FSM is computationally intractable for all but the smallest

problem sizes, heuristic approaches for finding near-

optimal solutions need to be used. Examples include simu-

lated annealing [1], genetic algorithms [8], ant colony op-

timization [3], and multi-start search algorithms [5]. We

use a combination of a genetic and a multi-start algorithm

because it maps particularly well to current GPUs.

Our algorithm generates multiple sets of random transition

tables (i.e., FSMs) and then attempts to improve each set

independently using a genetic algorithm (GA) until a local-

ly optimal solution is reached. In each GA step, the FSMs

of the current ‘population’ are evaluated to determine how

many correct predictions they make on a given input. (The

input is a trace of 1-bit events and their corresponding PC

values to index the state array.) Then, the next generation

of FSMs is created using mutation and crossover opera-

tions. A quarter of the new population is generated by mu-

tating random bits of the best-performing FSM from the

previous generation, that is, each bit in the state-transition

table is randomly flipped with 25% probability. The re-

maining three quarters of the new population is generated

by combining the best FSM with a randomly selected FSM

from the previous generation (we chose these values be-

cause they result in a simple implementation and good per-

formance). Each of these crossovers uses a different ran-

dom bit mask to select which bits should be taken from the

best FSM. Each bit has a 75% chance of coming from the

better ‘parent’ FSMs. The best FSM is copied over into the

new generation to ensure that the performance never drops.

This paper makes the following contributions.

 It presents the first GPUGA for optimizing predictor FSMs.

 It describes how to efficiently map this algorithm to GPUs

and compares its performance to multicore CPU code.

 It provides results for Fermi- and Kepler-based GPUs.

 It analyzes, visualizes, and discusses the best FSMs.

 The CUDA source code is publicly available at

http://cs.txstate.edu/~burtscher/research/FSM_GA/.

The rest of this paper is organized as follows. Section 2

explains the CUDA implementation in detail. Section 3

summarizes related work. Section 4 presents the evaluation

methodology. Section 5 evaluates the parameter space and

discusses the performance results. Section 6 concludes the

paper with a summary.

2. CUDA implementation

The combination of a multi-start search with a genetic algo-

rithm for determining well-performing FSMs was chosen

because it is particularly well suited for GPU acceleration.

It avoids potential performance hurdles such as uncoa-

lesced memory accesses, thread divergence, and inter-block

dependencies. Moreover, it naturally maps to the GPU’s

block and thread hierarchy and takes advantage of the

block scheduler for load balancing.

Each population of FSMs is evaluated in its own block.

This makes the blocks independent except for a single ato-

micMax operation to determine the globally best FSM.

Each GA-based search terminates when the performance of

the best FSM has not improved over the previous genera-

tion. This means that some blocks have to evaluate more

generations than other blocks do, resulting in load imbal-

ance. However, the GPU’s block scheduler automatically

launches another block as soon as one block has finished

executing, thus keeping all SMs busy until the scheduler

runs out of new blocks towards the end.

For all but very short inputs, the innermost loop that eva-

luates the prediction accuracy is the most time consuming

code section. It iterates over the trace entries, contains no

control transfers in its body and is therefore thread diver-

gence-free, reads the trace data in a fully coalesced manner

from global memory and also performs fully coalesced

reads and writes of the state arrays in local memory. The

code exclusively uses integer data and operations.

Users can parameterize the implementation along four di-

mensions: (1) the population count, which determines the

number of blocks, (2) the population size, which deter-

mines the number of threads per block, (3) the number of

entries per state array, and (4) the size of the FSM. For clar-

ity, we only focus on 3-bit FSMs in this paper.

Given the above assignments and current GPU specifica-

tions, the population count has to be between 1 and 65,535

on Fermi and between 1 and 2
31

-1 on Kepler, the popula-

tion size needs to be between 1 and 1024, and the number

of entries in the state arrays has to be a power of two (for

efficiency) between 1 and 32,768 due to local-memory size

limitations. All FSM state arrays are initialized to zero. The

LSB of the FSM’s state is used for making predictions.

To maximally exploit the GPU hardware, it is advisable to

select a population count that is substantially larger than the

number of blocks the SMs can execute concurrently (to

fully load the GPU and to allow the scheduler to balance

the load). The population size should be a multiple of 32 (to

fill warps entirely) and at least 192 on Fermi (because it

can run up to 8 blocks per SM) and 128 on Kepler (because

it can run up to 16 blocks per SM) to reach 1536 and 2048

threads per SM, respectively. Larger population counts and

sizes result in longer runtimes but potentially also better

results. The number of entries in the state arrays is likely

problem dependent, but shorter arrays result in better data-

cache performance and therefore better overall throughput.

The input trace consists of a sequence of 2-byte values, one

value per event, where the least significant bit is the true

outcome and the remaining 15 bits represent the bottom 15

bits of the PC (that are not always zero). The only con-

straint is that the trace has to fit into the GPU’s main mem-

ory. For example, a GPU with 2 GB of DRAM can process

traces with up to one billion events.

Even though the GA is orders of magnitude faster for large

FSMs than an exhaustive search, it still needs to evaluate

state transitions. Assuming a trace with one million events,

128 populations, a population size of 512, and an average

of 5 generations, this amounts to 328 billion state transi-

tions to be evaluated. At 30 billion state transitions per

second on a fast GPU, this takes about 11 seconds to ex-

ecute. The same parameters but with a one-billion-event

trace result in a runtime of 3 hours, highlighting the impor-

tance of accelerating even genetic algorithms. Note that

many and/or long traces are necessary to improve the gene-

rality of the FSM. Large population sizes and large popula-

tion counts in particular are needed to improve the predic-

tion accuracy by allowing the GA to diversify, i.e., not get

stuck in a local maximum.

The code uses random numbers to initialize the transition

tables of the first generation of FSM, to determine the mask

values for the crossover operations, and to select bits to flip

for the mutation operations. We use the XORWOW pseu-

do-random number generator from the cuRAND library

that is included with CUDA 5.0.

For comparison purposes, we also wrote a multicore CPU

version of our code. It is largely the same as the CUDA

implementation. In particular, the most time-consuming

loop that iterates over the trace entries is identical. The

CPU code parallelizes the loops that iterate over the FSMs

of a population using OpenMP parallel for directives with

a dynamic schedule. Since the code uses the rand_r func-

tion from the standard C library to generate the random

numbers, the results between the C and the CUDA imple-

mentations are not directly comparable, which is why we

only compare the throughputs.

3. Related work

Fogel et al. first developed evolutionary programming [6]

and considered using it to evolve FSMs for time-series pre-

dictions [7]. Similar to their approach, we evolve FSMs

using mutations and crossovers of state transition tables to

find better machines. Holland furthered the application of

evolutionary techniques by creating Genetic Algorithms

(GAs), i.e., a framework of genetic operations on popula-

tions of individuals [10].

Since the introduction of CUDA, many genetic algorithms

have been accelerated using GPUs, in particular the fitness

evaluation, which generally represents the overwhelming

majority of the computation (also indicated by our results)

[12]. However, to the best of our knowledge, there is no

prior work on GPU acceleration of a genetic algorithm for

determining good FSMs. The following three projects are

the most similar to our work in that their goal is also to

automatically generate well-performing FSMs.

Emer and Gloy introduced an algebraic-style notation to

express state identification and feedback processes [4]. In

their genetic programming search, they represent individu-

als by a tree that consists of predictor, function, and termin-

al nodes. The predictors contain dedicated memory (used in

dynamic predictions), size and index information as well as

conditions for updating the state of the predictor (feedback

process). Functions are internal relation operations such as

XOR or SATUR (saturating add). Terminals handle the

input and updates for each prediction problem. These nodes

can be modified in the genetic programming process to

evolve more sophisticated predictors. E.g., by performing a

crossover they might combine one predictor’s function with

another predictor (with some constraints) or modify the size

of memory allotted for that predictor. The result of the ge-

netic programming search is the most successful predictors

with the smallest misprediction ratio (fitness measure) as

well as their configurations. Note that Emer and Gloy em-

ploy genetic programming to search for (arbitrarily com-

plex) candidate predictors whereas we explore candidate

transition tables of fixed-size bimodal FSMs.

Sherwood and Calder introduced an approach that automat-

ically builds FSM predictors designed to find efficient n
th

-

order Markov model FSMs for small design areas by ana-

lyzing profile information [18]. They do not use a genetic

algorithm. Rather, they express sets of compact strings in

form of regular expressions. By mapping these regular ex-

pressions to FSMs, the FSMs can identify the input strings

of their corresponding language. A key difference between

their work and ours is the use of an n
th

-order Markov model

compared to our genetic search. This results in the cost of

having to maintain a Markov table for the history of proba-

bilities. Moreover, much of their work is not directed to-

wards performance, which is one of our key objectives.

Jackson and one of us proposed a pure hardware implemen-

tation of a genetically evolving set of bimodal FSMs for

confidence estimation that does not require intervention

from the user or profiling [11]. Confining the method to

hardware allows for dynamic adaptation but restricts the

population count and size to very small values compared to

the software solution presented here.

4. Experimental methodology

4.1 Systems and compilers

We evaluate the CUDA code on two GPUs, a Fermi-based

GeForce GTX 480 and a Kepler-based GeForce GTX 680.

The GTX 480 has 15 SMs with 480 CUDA cores in total,

1.5 GB of global memory, is clocked at 1.4 GHz, and sup-

ports compute capability 2.0. The GTX 680 has 8 SMXs

with 1536 CUDA cores in total, 2 GB of global memory, is

clocked at 1.05 GHz, and supports compute capability 3.0.

The compiler is nvcc version 5.0. The CUDA source code

is the same for both GPUs, but the compiler flags are ‘-O3

-arch=sm_20’ for the Fermi and ‘-O3 -arch=sm_30’ for the

Kepler. The code uses 48 kB of L1 data cache and 16 kB of

shared memory per SM.

The CPU code is written in C, parallelized with OpenMP,

and run on two hex-core Xeon X5690 CPUs with hyper-

threading, i.e., 24 threads in total. The two processors are

clocked at 3.47 GHz, have a 12 MB L3 cache each, and

share 24 GB of main memory. Each CPU core has dual 32

kB L1 caches and a 256 kB L2 cache. We use gcc version

4.4.6 with the ‘-O3 -msse4.2 -fopenmp’ switches. The op-

erating system is 64-bit CentOS version 6.3.

To maximize the performance, we hardcode the user se-

lectable parameters, i.e., the population count, the popula-

tion size, the number of elements in the state arrays, and the

FSM size in both the C and CUDA codes. This requires a

recompilation after every parameter change but results in

faster program execution. Since each of our experiments

takes several minutes or longer to run, the approximately

one second of compilation time is easily amortized.

4.2 Measurements

All timing and throughput measurements are performed by

instrumenting the source code, i.e., by adding code to count

the number of generations and to read a timer before and

after the measured code section. We measure the wall time

of the CUDA kernel or the C function that evaluates the

FSMs and performs the genetic algorithms – which, on our

traces, represents essentially all of the total runtime. Each

experiment is conducted once because tests showed the

runtimes to be quite stable between multiple runs with

identical parameters.

4.3 Trace datasets

We use six datasets for our evaluation. They were extracted

from two SPEC programs running on a 64-bit RISC ma-

chine. One program is gcc compiling a 638-line C program

that implements the Barnes-Hut n-body simulation algo-

rithm. The other program is mcf, a combinatorial optimiza-

tion code running the provided train input. We extracted

three traces from the user and library code of both pro-

grams (i.e., we did not capture the operating system code,

which is negligible in SPEC programs). The first trace

records, for all executed branch instructions, whether they

were taken or not. The second trace records, for all ex-

ecuted load instructions, whether their effective addresses

are stride prefetchable. The third trace records, for all ex-

ecuted load and store instructions that hit in a 2-way asso-

ciative data cache, whether the first or the second set holds

the accessed data.

Table 1. Trace information

Table 1 summarizes pertinent information about each data-

set. The ‘ones’ column indicates the percentage of the trace

entries with a true outcome of ‘1’, that is, how biased the

entries are. The unique PCs reflect how many of the 32,768

possible PC values occur in the trace. This determines the

maximum number of state-array entries that will be used.

However, some PCs occur rarely whereas others are very

frequent. To account for this variability, we also computed

the entropy of the PCs: H(PC). Raising 2 to the power of

this entropy yields a ‘weighted’ number of PCs and there-

fore state-array entries, i.e., a measure of the working-set

size below which significant aliasing is likely to occur.

5. Results

Unless otherwise stated, the default parameters for our ge-

netic algorithm are a population count of 128, a population

size of 512, and 1024 entries in the state arrays. These pop-

ulation counts and sizes result in good 3-bit FSMs and in

high throughputs on the GPUs, as they map well to the giv-

en architectures. We picked 1024-entry state arrays because

that is a reasonable size for hardware tables.

5.1 FSM quality

We first evaluate the quality of the best 3-bit bimodal

FSMs that the genetic algorithm finds by comparing them

to the 3-bit saturating up/down counter as well as to the

optimal bimodal 1-bit and 2-bit FSMs, which were deter-

mined with an exhaustive search. Figure 2 plots the mi-

sprediction ratio in percent against the state-array size for

the four types of FSMs. The left panels refer to gcc and the

right panels to mcf. The top pair of panels shows the results

for the branch outcome traces, the middle pair for the stride

prefetchability traces, and the bottom pair for the cache

way traces. Note that the y-axes are different for each panel

and are not zero based to improve readability.

The optimal 1-bit FSM performs relatively poorly, espe-

cially on the two branch outcome traces, because it retains

the least amount of state. Nevertheless, it occasionally out-

performs the 3-bit saturating up/down counter on the non-

branch traces, particularly with large state arrays. On mcf’s

cache way trace, the optimal 1-bit FSM is consistently and

significantly better than the 3-bit counter, which is the

worst FSM on that trace. This highlights that saturating

counters are not always good choices, particularly when

predicting non-branch events.

On both branch traces, the optimal 2-bit FSM is, in fact, the

2-bit saturating up/down counter (with large state arrays).

Interestingly the 3-bit saturating up/down counter always

outperforms the 2-bit counter on gcc, but on mcf the 3-bit

counter is sometimes worse than the 2-bit counter. The

optimal 2-bit FSM always outperforms the optimal 1-bit

FSM because the 2-bit FSMs are a superset of all possible

1-bit FSMs. The optimal 2-bit FSM often beats the 3-bit

counter except on the gcc branch trace. Yet, the optimal 2-

bit FSM never outperforms the best 3-bit FSM produced by

the GA, indicating that the genetic algorithm works well.

In fact, on our traces, the GA always yields the best FSM

for all state-array sizes tested. These FSMs perform 1% to

90% better than the optimal 1-bit FSM, 1% to 29% better

than the optimal 2-bit FSM, and 1% to 41% better than the

Program Trace type Length [entries] Length [MB] Ones [%] Unique PCs 2H(PC)

gcc branch outcome 60,666,667 115.7 27.0 14,881 2754.7

gcc prefetchability 97,155,132 185.3 48.6 22,631 4476.8

gcc way selection 144,637,560 275.9 50.4 26,420 4900.5

mcf branch outcome 29,474,825 56.2 45.1 943 89.8

mcf prefetchability 38,047,003 72.6 40.0 1,698 142.3

mcf way selection 61,234,883 116.8 51.7 2,562 119.3

3-bit saturating counter. Importantly, on all six traces, the

best 3-bit FSM often outperforms (by up to 26%) the op-

timal 2-bit FSM with twice the state-array entries, making

the 3-bit FSM the more state-efficient solution. Similarly,

the best 3-bit FSM often outperforms (by up to 52%) the

optimal 1-bit FSM with four times as many state-array en-

tries, again making the 3-bit FSM more size efficient.

Interestingly, on five of the six traces, the best FSMs some-

times perform worse with larger state arrays. This generally

happens at the low end, where the aliasing in the state array

is high. Apparently, increased aliasing does not always hurt

the prediction accuracy. In fact, the mcf cache-way trace is

best predicted by all four FSM types when they are only

given one entry in the state array. Clearly, there is a sub-

stantial amount of correlation between the selected cache

way in this trace, which, overall, is the most difficult-to-

predict of our six traces.

Notwithstanding the constructive aliasing in very small

state arrays with 16 or fewer entries, we find that the entro-

py-based minimal number of needed entries (cf. the last

column in Table 1) accurately indicate the state-array size

above which the performance improvement flattens out in

all six panels of Figure 2.

Figure 2. Percent misses (y-axes) for different state-array sizes (x-axes) of four bimodal FSMs on the six traces

MCFGCC

b
ra

n
ch

 o
u

tc
o

m
e

st
ri

d
e

p
re

fe
tc

h
ab

le
ca

ch
e

w
ay

5

10

15

20

25

30

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

m
is

p
re

d
ic

ti
o

n
s

[%
]

state-array entries

best 1 bit

best 2 bit

3-bit cntr

3-bit GA

10

15

20

25

30

35

40

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

m
is

p
re

d
ic

ti
o

n
s

[%
]

state-array entries

best 1 bit

best 2 bit

3-bit cntr

3-bit GA

5

10

15

20

25

30

35

40

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

m
is

p
re

d
ic

ti
o

n
s

[%
]

state-array entries

best 1 bit

best 2 bit

3-bit cntr

3-bit GA

5

10

15

20

25

30

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

m
is

p
re

d
ic

ti
o

n
s

[%
]

state-array entries

best 1 bit

best 2 bit

3-bit cntr

3-bit GA

20

25

30

35

40

45

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

m
is

p
re

d
ic

ti
o

n
s

[%
]

state-array entries

best 1 bit

best 2 bit

3-bit cntr

3-bit GA

20

22

24

26

28

30

32

34

36

38

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

m
is

p
re

d
ic

ti
o

n
s

[%
]

state-array entries

best 1 bit

best 2 bit

3-bit cntr

3-bit GA

5.2 Throughput comparison

This subsection compares the throughput (in billion state

transitions evaluated per second) of the CUDA code run-

ning on two different GPUs and the OpenMP code running

on a system with dual hex-core X5690 CPUs and hyper-

threading. For clarity, we only show results for the stride

prefetchability trace from mcf.

Figure 3. Throughput as a function of the number of state-

array entries

Figure 3 shows the throughput for different state-array siz-

es. On all three processors, a single state yields the highest

throughput because the compilers scalarize the 1-entry ar-

rays. The Kepler evaluates 73.6 billion state transitions per

second (Gtr/s) in this configuration, the Fermi reaches 35.5

billion, and the two CPUs together peak at 6.9 billion. All

larger state-array sizes result in lower but relatively stable

throughputs. The Kepler’s throughput drops to under 40

Gtr/s for larger array sizes. The Fermi’s throughput hovers

around 23 Gtr/s. The CPUs’ throughput is very stable at 5.3

Gtr/s. Thus, the Kepler outperforms the Fermi by about a

factor of 1.5 to 2 and the CPUs by a factor of 7 to 9 or, in a

chip-to-chip comparison, one CPU by a factor of 14 to 18.

Figure 4. Throughput as a function of the population size

Figure 4 compares the throughputs for different population

sizes. Beyond a population size of 32, the CPUs’ through-

put is almost constant, but the GPUs need a population size

of at least 512 to reach their full potential. Since the popu-

lation size equals the number of threads in a block, it ap-

pears that a block size under 512 threads results in ineffi-

cient utilization of the GPU hardware.

Figure 5. Throughput as a function of the population count

Figure 5 shows the throughputs for different population

counts. Because the OpenMP code is parallelized over the

FSMs within a population, there is no difference in its

throughput when varying the number of populations. How-

ever, the CUDA code uses a hierarchical parallelization

approach to match the GPU hardware. At least 128 popula-

tions (i.e., thread blocks) are necessary to saturate the

GPUs. Their performance keeps increasing beyond 128

blocks because larger numbers of blocks result in relatively

less load imbalance towards the end when the scheduler

runs out of blocks to allocate to the SMs. Note that the

Fermi has 15 SMs, which means that a population count of

8 leaves almost half of the SMs with no work. Because

SMs can run multiple blocks simultaneously, the Fermi

needs at least 45 blocks with 512 threads each to fully load

its SMs and the Kepler needs at least 32 blocks. However,

at these numbers of blocks, no load balancing is possible as

all blocks immediately start running. This is why the

throughput only starts to flatten out at about 128 blocks.

In summary, the number of entries in the state arrays does

not affect the throughput much, but the population count

and size do. On both of our GPUs, the population size

should be at least 512 and the population count 128 to fully

exploit the hardware. At these sizes, the Kepler GPU is

roughly nine times faster than our two high-end CPUs.

5.3 Parameter-space exploration

Figure 6 illustrates how the throughput on the Kepler and

the misprediction ratio of the best 3-bit bimodal FSM de-

pend on the population size, the population count, and the

number of entries in the state arrays for the six traces.

Increasing the population size or count greatly improves the

throughput but only minimally reduces the misprediction

ratio. This is expected as genetic algorithms generally al-

ready produce a good solution on a single population. The

purpose of the multiple populations (i.e., the random res-

tarts) is to provide variability to escape local maxima. For

instance, going from 8 to 1024 populations improves the

best FSM by 1.3% to 3.8%, and going from a population

size of 32 to a population size of 1024 improves the best

FSM by 1.7% to 3.7%.

0

10

20

30

40

50

60

70

80

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

th
ro

u
gh

p
u

t
[G

tr
/s

]

state-array entries

Kepler

Fermi

OpenMP

0

5

10

15

20

25

30

35

40

45

32 64 128 256 512 1024

th
ro

u
gh

p
u

t
[G

tr
/s

]

population size

Kepler

Fermi

OpenMP

0

5

10

15

20

25

30

35

40

45

8 16 32 64 128 256 512 1024

th
ro

u
gh

p
u

t
[G

tr
/s

]

population count

Kepler

Fermi

OpenMP

Since the average number of generations is consistently

between 4 and 6.5 in almost all of our experiments (not

shown) and the runtime is proportional to the population

size and count, the runtime can be drastically reduced by

lowering the population count or the population size while

only hurting the performance of the best FSM a little.

The throughput drops above 32 entries in the state arrays

for the mcf branch outcome trace and especially for the

three gcc traces. This is the result of the L1 data cache not

being large enough to hold the active state-array elements.

Mcf only has a few frequently executed load and store in-

structions, which is why its prefetchability and cache-way

traces do not suffer from a similar drop in throughput.

5.4 Best FSMs

This section visualizes and discusses three of the FSMs that

our genetic algorithm generated and compares them with

the saturating up/down counter. We plot the states in square

boxes and mark them with a ‘P’ in case of a positive (yes,

true, ‘1’) prediction and an ‘N’ for a negative (no, false,

‘0’) prediction. The states are numbered for identification

purposes only. The P states are completely interchangeable,

as are the N states except for N0, which is the initial state.

Figure 6. Throughput and misprediction ratio on the six traces as a function of different parameters

5

10

15

20

25

30

35

40

45

32 64 128 256 512 1024

th
ro

u
gh

p
u

t
[G

tr
/s

]

population size

gcc br

gcc pref

gcc way

mcf br

mcf pref

mcf way

5

10

15

20

25

30

32 64 128 256 512 1024

m
is

p
re

d
ic

ti
o

n
s

[%
]

population size

gcc br

gcc pref

gcc way

mcf br

mcf pref

mcf way

5

10

15

20

25

30

35

40

45

8 16 32 64 128 256 512 1024

th
ro

u
gh

p
u

t
[G

tr
/s

]

population count

gcc br

gcc pref

gcc way

mcf br

mcf pref

mcf way

5

10

15

20

25

30

8 16 32 64 128 256 512 1024

m
is

p
re

d
ic

ti
o

n
s

[%
]

population count

gcc br

gcc pref

gcc way

mcf br

mcf pref

mcf way

10

20

30

40

50

60

70

80

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

th
ro

u
gh

p
u

t
[G

tr
/s

]

state-array entries

gcc br

gcc pref

gcc way

mcf br

mcf pref

mcf way

5

10

15

20

25

30

35

40

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

m
is

p
re

d
ic

ti
o

n
s

[%
]

state-array entries

gcc br

gcc pref

gcc way

mcf br

mcf pref

mcf way

The state transitions are displayed by arrows labeled with

the frequency of occurrence as a percentage of the total

number of transitions. Negative labels indicate transitions

on a ‘0’ input and positive labels on a ‘1’ input. Thus, all

states have two outgoing edges.

The first FSM we want to discuss is the best 3-bit FSM for

the mcf cache-way trace. This FSM is peculiar because it

outperforms all other FSMs with just one entry in the state

array. On every other trace, the largest state array yields the

best results. Figure 7 shows how this FSM operates.

The most prominent feature of the FSM is its big cycle.

This is a fundamental difference from a saturating up/down

counter, which has a linear structure that looks like a doub-

ly-linked list with loops (self edges) at the head and tail.

The big cycle has several segments that are directional, i.e.,

they have to be traversed in a specific direction (counter-

clockwise in the figure).

Quite a few states have loops that allow the FSM to stay in

the same state. The two most frequently used states with

loops are P3 and N3. The FSM stays in N3 as long as the

input is ‘0’ but switches to P3 upon encountering a ‘1’.

However, the reverse is not true. After seeing a ‘0’ in P3,

the FSM first transitions to N1 before either going to N3 or

P1. If it goes to P1, it has to traverse the entire cycle to get

back to P3. N3, P3, and N1 form a small cycle, which is

traversed about twice as frequently (3.1%) as the big cycle

(1.5%). N1, P0, and N0 are transitional states that always

force a transition to a different state.

The ‘0’ transitions out of P1 and P2 are interesting in that

they need to be followed by another ‘0’ before the FSM

starts predicting zero. Similarly, N2 needs to be followed

by two ‘1’ inputs before the FSM predicts one. The other

five states provide no such hysteresis and immediately

switch the prediction as soon as the opposite bit is seen.

This may explain why saturating counters do not perform

better on this trace. After all, n-bit counters with n ≥ 2 al-

ways provide some hysteresis when leaving their looping

states. However, providing no hysteresis, as the simple last-

value predictor does, also does not perform well because

the optimal 1-bit FSM (cf. Figure 2), which outperforms the

last-value predictor, is noticeably worse than the best 3-bit

FSM that the GA found. So this combination of some states

with and some without hysteresis appears to be important

for this hard-to-predict trace.

Moreover, there are several looping states that are followed

by two forced transitions before reaching the next looping

state, which also seems to be an important characteristic. In

fact, the chain P1, P0, and N2 is essentially the inverse of

the chain N2, N0, and P2, and even the traversal frequen-

cies are similar. The exceptions are P2 and N3.

Since there is maximal aliasing in this FSM, nothing can be

derived from it about the behavior of individual instructions

other than that the correlation between instructions is ap-

parently stronger than any self correlation.

The second FSM we studied is the best 3-bit FSM for the

gcc stride-prefetchability trace with 32,768 state-array en-

tries. This FSM is interesting because it has the highest

accuracy of all the FSMs we tested. Since the optimal 1-

and 2-bit FSMs and the 3-bit saturating counter also per-

form well, this trace appears to be easy to predict. Looking

at Figure 8, we observe that the best 3-bit FSM only uses

six of the eight possible states. P0 and P3 are never visited,

indicating that this trace is, indeed, simple in structure. Al-

so, folding P2 into P1 would essentially yield a saturating

counter that only provides hysteresis after seeing many

zeros in N3 but not after encountering many ones in P1 or

many zeros in N0. Thus, this FSM has two looping zero

states, one with (N3) and the other without (N0) hysteresis.

The third FSM we investigated is the best 3-bit FSM for the

mcf branch-outcome trace with 32,768 state-array entries.

It is noteworthy in that it barely performs better than the 3-

bit counter and the optimal 2-bit FSM, but much better than

the optimal 1-bit FSM. Figure 9 displays its operation.

Aside from the two very frequent looping states N0 and P1,

this FSM is quite strange. However, given that the odd

parts are infrequently traversed and that the FSM does not

perform much better than the best 2-bit FSM, we surmise

that the oddities are not particularly important. Neverthe-

less, there are a few interesting observations. It takes four

transitions to go from one to the other looping state, which

Figure 7. Best 3-bit FSM on the mcf

cache-way trace

Figure 8. Best 3-bit FSM on the gcc pre-

fetchability trace

Figure 9. Best 3-bit FSM on the mcf

branch-outcome trace

is one more than in a 2-bit saturating counter. Both looping

states provide a hysteresis of one state just like the 2-bit

counter does. However, N3 also provides a hysteresis on a

one input and, very strangely, N1 provides a hysteresis on

either input. In other words, when a ‘0’ is seen in N1, the

FSM predicts a one next and if a ‘1’ is seen, it predicts a

zero next. Clearly, the hystereses are important and explain

why the optimal 1-bit FSM, which cannot provide any hys-

teresis, does not perform well.

6. Summary and conclusions

This paper describes a multi-start genetic algorithm for the

synthesis of well-performing bimodal FSMs for designing

hardware predictors. The implementation of this algorithm

is GPU friendly in that it avoids potential performance bot-

tlenecks and exploits the GPU’s capabilities well.

It takes about a dozen cycles per GPU core to evaluate a

state transition, i.e., to make a prediction, check its correct-

ness, and update the FSM’s state based on the true out-

come. On a GTX 680, our code assesses up to 73 billion

state transitions per second. On our six traces with tens to

hundreds of millions of entries, it takes just seconds to gen-

erate FSMs that outperform the saturating up/down counter,

a widely-used FSM, in many cases by a large margin.

Compared to OpenMP code running on a high-end hex-

core Xeon X5690 with hyper-threading, the GPU code is

14 to 18 times faster.

We conclude that GPU acceleration is very useful in this

domain and that our implementation exploits the GPU

hardware well. Moreover, studying the resulting FSMs can

provide insight into the structure of the traces, i.e., the na-

ture of the events being predicted, that explains why satu-

rating up/down counters sometimes do not perform well.

7. Acknowledgments

This work was supported by NSF grants 1141022 and

1217231 and as well as donations from Nvidia Corporation.

8. References

[1] Aarts, E. and Korst, J. 1988. Simulated annealing and

boltzmann machines. New York, NY; John Wiley and

Sons.

[2] Bellas, N. et al. 1999. Using dynamic cache manage-

ment techniques to reduce energy in a high-

performance processor. Low Power Electronics and

Design, 1999. Proceedings. 1999 International Sym-

posium on (1999), 64–69.

[3] Dorigo, M. et al. 1996. Ant system: optimization by a

colony of cooperating agents. Systems, Man, and Cy-

bernetics, Part B: Cybernetics, IEEE Transactions on.

26, 1 (1996), 29–41.

[4] Emer, J. and Gloy, N. 1997. A language for describing

predictors and its application to automatic synthesis.

24th Annual International Symposium on Computer

Architecture (1997), 304–314.

[5] Feo, T.A. and Resende, M.G.C. 1995. Greedy rando-

mized adaptive search procedures. Journal of global

optimization. 6, 2 (1995), 109–133.

[6] Fogel, L. et al. 1966. Artificial Intelligence through

Simulated Evolution. John Wiley.

[7] Fogel, L.J. et al. 1995. Approach to Self-Adaptation

on Finite State Machines. Evolutionary Programming

IV: Proceedings of the Fourth Annual Conference on

Evolutionary Programming (1995), 355.

[8] Goldberg, D.E. 1989. Genetic algorithms in search,

optimization, and machine learning. Addison Wesley.

(1989).

[9] Grunwald, D. et al. 1998. Confidence estimation for

speculation control. 25th Annual International Sympo-

sium on Computer Architecture (1998), 122–131.

[10] Holland, J.H. 1975. Adaptation in natural and artificial

systems, University of Michigan press. Ann Arbor, MI.

1, 97 (1975), 5.

[11] Jackson, S.J. and Burtscher, M. 2006. Self-optimizing

Finite State Machines for Confidence Estimators.

Workshop on Introspective Architecture. (2006).

[12] Langdon, W.B. 2011. Graphics processing units and

genetic programming: An overview. Soft Computing-A

Fusion of Foundations, Methodologies and Applica-

tions. 15, 8 (2011), 1657–1669.

[13] Lee, C.C. et al. 1997. The bi-mode branch predictor.

Microarchitecture, 1997. Proceedings., Thirtieth An-

nual IEEE/ACM International Symposium on (1997),

4–13.

[14] Loh, G.H. and Henry, D.S. 2002. Predicting condi-

tional branches with fusion-based hybrid predictors.

Parallel Architectures and Compilation Techniques,

2002. Proceedings. 2002 International Conference on

(2002), 165–176.

[15] McFarling, S. 1993. Combining branch predictors.

Technical Report TN-36, Digital Western Research

Laboratory.

[16] Milenkovic, A. et al. 2011. Caches and predictors for

real-time, unobtrusive, and cost-effective program

tracing in embedded systems. Computers, IEEE

Transactions on. 60, 7 (2011), 992–1005.

[17] Peress, Y. et al. Re-Defining the Tournament Predictor

for Embedded Systems. Workshop on Optimizations

for DSP and Embedded Systems (2010), 53–61.

[18] Sherwood, T. and Calder, B. 2001. Automated design

of finite state machine predictors for customized pro-

cessors. Computer Architecture. Proceedings. 28th

Annual International Symposium on (2001), 86–97.

[19] Yeh, T.-Y. and Patt, Y.N. 1993. A comparison of dy-

namic branch predictors that use two levels of branch

history. Proceedings of the 20th annual international

symposium on computer architecture (1993), 257–266.

[20] Yoaz, A. et al. 1999. Speculation techniques for im-

proving load related instruction scheduling. Computer

Architecture, 1999. Proceedings of the 26th Interna-

tional Symposium on (1999), 42–53.

