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ABSTRACT

While caches are effective at avoiding most main-memory
accesses, the few remaining memory references are still ex-
pensive. Even one cache miss per one hundred accesses
can double a program’s execution time. To better toler-
ate the data-cache miss latency, architects have proposed
various speculation mechanisms, including load-value pre-
diction. A load-value predictor guesses the result of a load
so that the dependent instructions can immediately proceed
without having to wait for the memory access to complete.

To use the prediction resources most effectively, specula-
tion should be restricted to loads that are likely to miss in
the cache and that are likely to be predicted correctly. Prior
work has considered hardware- and profile-based methods
to make these decisions. Our work focuses on making these
decisions at compile time. We show that a simple compiler
classification is effective at separating the loads that should
be speculated from the loads that should not. We present
results for a number of C and Java programs and demon-
strate that our results are consistent across programming
languages and across program inputs.
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1. INTRODUCTION

Caches address the widening gap between processor and
memory speeds by satisfying most memory requests quickly.
However, because of the high cost of main-memory refer-
ences, even a few cache misses can significantly degrade pro-
gram performance. For this reason, prior work has proposed
several speculation techniques, including load-value predic-
tion [20], for hiding the latency of cache misses. Load-value
predictors guess the result of a load as soon as the load starts
executing. Instructions that need the loaded value can pro-
ceed using the guessed value without waiting for the memory
access to complete (reduced latency) and are thus able to
execute in parallel with the load (increased instruction-level
parallelism). This paper focuses on the latency-reduction
aspect of load-value prediction.

To make the most of speculation hardware for latency
reduction, we should ideally restrict its use to the loads
that miss in the cache and that are predictable. Apply-
ing speculation to loads that hit in the cache can destruc-
tively interfere with the speculation of loads that miss in the
cache. Moreover, if speculation is done in software, specu-
lating loads that hit in the cache unnecessarily increases the
code size. Applying speculation to loads that are unlikely
to be predicted correctly will incur a misspeculation penalty
and slow down program execution.

The recent load-value prediction literature proposes com-
plex predictors that combine multiple basic predictors (hy-
brids) [8, 25, 31] and incorporate confidence estimators to
dynamically decide which loads are worth predicting and
with which predictor [5, 7, 9, 20, 24]. The confidence estima-
tors try to filter out loads that would be mispredicted since
mispredictions lower program performance. While modern
load-value predictors are quite effective in simulations, their
complexity degrades various performance parameters such
as critical path length (i.e., cycle time), energy consumption,
heat dissipation, and chip area in a real hardware implemen-
tation. The goal of our research is to better understand how
various static program characteristics relate to cache perfor-
mance and value predictability, thus providing a foundation
for making speculation decisions in compilers rather than in
hardware.

Our approach is to statically partition all load instruc-
tions into 20 classes based on factors such as the type of the
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references (e.g., heap), and the kind of the load (e.g., ar-
ray reference) and to measure the cache behavior and value
predictability of these classes. We conduct our experiments
using three two-way set-associative cache sizes (16K, 64K,



and 256K) and simulate five load-value predictors described
in prior work: (i) Lv, which predicts the last value for every
load, (ii) L4v, which predicts one of the last four values for
every load, (iii) sT2D, which uses strides to predict loads,
(iv) FcM, which uses a representation of the context of pre-
ceding loads to predict a load, and (v) DFCM, which enhances
FCM with strides. We simulate two sizes of load-value pre-
dictors: realistic (2048 entries) and infinite.

Our experiments use programs drawn from the SPECint95,
SPECint00 and SPECjvm98, benchmark suites and demon-
strate the following. First, the same classes make up the
majority of cache misses across our benchmark programs.
Six classes (representing about half of all references) ac-
count for most of the cache misses. Second, the load-value
predictability of classes is consistent, i.e., some classes are
highly predictable across benchmarks while others are highly
unpredictable. We show how to exploit this class behavior
to improve the load-value predictability of loads that miss
in the cache. Third, we demonstrate that predictors that
perform the best in prior work, FCM and DFCM, do not per-
form the best for cache misses. In other words, FCM and
DFCM are most effective on the loads that are unimportant
for performance. Finally, we demonstrate that our results
are consistent across languages (C and Java) and across pro-
gram inputs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents background information on load-value pre-
diction. Section 3 describes our simulation framework and
the benchmark programs. Section 4 presents our experimen-
tal results and discusses their implications for hardware and
compilers. Section 5 reviews related work, and Section 6
concludes the paper.

2. BACKGROUND

At the outset, load-value prediction seems like a hopelessly
hard problem: after all, a 32-bit word can hold over four
billion distinct values and a 64-bit word over 10'° values.
Fortunately, load values tend to cluster, repeat, occur in
sequences, exhibit patterns, and correlate with one another.
Prior work has proposed different predictors, each tailored
to some kind of load-value locality. These predictors differ in
the kind of information they retain and in the computations
they perform on this information to produce a prediction.

The last value predictor Lv [14, 20] simply predicts that
a load instruction will load the same value that it did the
previous time it executed. Lv can only predict sequences of
repeating values (e.g., 3, 3, 3, 3, ...). Such sequences are sur-
prisingly frequent [14, 20]. All load instructions that load
run-time constants such as starting addresses of data struc-
tures and floating-point constants fall into this category.

The stride 2-delta predictor ST2D [27] remembers the last
value for each load (like Lv) but also maintains a stride,
which is the difference between the last two loaded values.
To make a prediction, ST2D adds the stride to the last value
of the load. When a load finishes, sT2D updates the last
value. ST2D updates the stride only if it encounters the
same stride twice in a row. Doing so eliminates the problem
of making two consecutive mispredictions at every transition
from one predictable sequence to another [5, 27].

Like Lv, ST2D can also predict sequences of repeating val-
ues; the stride is simply zero in this case. In addition, ST2D
can predict sequences that exhibit genuine stride behavior
(e.g., -4, -2, 0, 2, 4, ...), i.e., sequences where the stride is

a non-zero constant. Such sequences are not very frequent
[14, 27] because register allocation assigns most induction
variables to registers, but they do occur, for example, when
a program uses global variables as counters.

The last four value predictor L4v [6, 19, 31] is similar to
the last value predictor except that it retains the four most
recently loaded values. At each load, L4V selects from its
four possibilities the entry (not the value) that made the
most recent correct prediction. Like the sST2D and the Lv
predictors, L4V can also predict repeating values. In addi-
tion, L4V can predict alternating values (e.g., -1, 0, -1, 0, -1,
...) or, more generally, any short repeating sequence that
spans no more than four values (e.g., 1, 2, 3, 1, 2, 3, 1, ...).
Such sequences are more frequent than true stride behavior
[6, 19]. In particular, alternating sequences occur relatively
often when variables toggle between two values.

The finite context method predictor FCM [26, 27] computes
a hash value out of the last four values of a load using a
select-fold-shift-xor function [24, 25, 26] to index the pre-
dictor’s second level table. This table stores the values that
follow every seen sequence of four values (modulo the ta-
ble size). Since the table is shared, load instructions can
communicate information to one another in this predictor.
Hence, after observing a sequence of load values, FCM can
predict any load that loads the same sequence.

FCM can predict long sequences of arbitrary reoccurring
values (e.g., 3, 7, 4,9, 2, ..., 3, 7, 4,9, 2, ...). These se-
quences occur, for instance, during the repeated traversal
of dynamic data structures. Note that this predictor can
also predict alternating sequences and sequences exhibiting
stride behavior as long as the sequence repeats and its length
does not exceed the table size.

The differential finite context method predictor DFCM [16]
improves on FCM by retaining strides instead of absolute
values. This approach reduces the chance of detrimental
aliasing in the second-level table, often increases the predic-
tor’s capacity, and enables it to predict values it has never
before seen. Thus, DFCM combines the strengths of FCM and
ST2D at the cost of some additional complexity.

3. METHODOLOGY

Our approach is to use compiler and binary instrumenta-
tion to generate a detailed trace. For each load, the trace
give the class of the load. The cache and load-value predic-
tor simulators consume these traces and for each load they
determine if the predictor would have predicted the load
correctly, update the state, and attribute the prediction or
misprediction to the class of the load. The cache simulators
determine if the load hits or misses in the cache and also at-
tributes the hit or miss to the class of the load. At the end
of the run, we output statistical information for each class,
including their cache and load-value predictor behavior.

Sections 3.1 and 3.2 present the classes and our classi-
fication technique, respectively. Section 3.3 describes how
we use the class information in our simulations. Section 3.4
describes our benchmark programs.

3.1 Classes

We distinguish between two kinds of references: high-level
references that are visible at the source level and low-level
references that are only visible in the assembly or some other
low-level representation of programs. We consider two kinds
of low-level references for C programs: loads of return ad-



dresses (RA) and restores of callee-saved registers (Cs), and
one kind of low-level load for Java programs: memory copies
by the run-time system (MC). We consider three dimensions
when classifying the high-level references:

e The region of memory the reference accesses: is the
reference loading from a location in the stack, the heap,
or the global space?

e The kind of reference: is the reference loading an ob-
ject field, an array element, or a scalar variable?

e The type of the reference: is the reference loading a
value of type pointer or non-pointer?

We picked these dimensions based on our intuition and
the description of load-value predictors in prior work. More
specifically, one of the strengths of FCM and DFCM (given
in prior work) is that they can successfully predict repeated
traversals of linked data structures. Thus FCM and DFCM
will probably be the most successful at predicting pointer-
typed loads from object fields. In subsequent work we are
studying other classifications also, such as ones based on
simple program analyses.

We use three-letter abbreviations for high-level references.
The first letter stands for the region of memory (Stack,
Heap, or Global). The second letter denotes the kind of ref-
erence (Array, Field, or Scalar). The third letter indicates
the type of the reference (Pointer or Non-pointer). For ex-
ample, an HFP reference loads the value of a pointer-typed
field in a heap-allocated object.

3.2 Load Classification

Figure 1 shows our data-collection setup for C programs.
We first translate the benchmark programs to the SUIF v.1
representation [17]. Next, we add instrumentation to loads
that are visible at the SUIF level (high-level loads). The in-
strumentation communicates the type, kind, address, and
virtual program counter' of each load to the VP library
(Section 3.3). Then, we compile the instrumented programs
on an Alpha/OSF workstation and instrument the low-level
loads in the resulting binary using ATOM [29]. Finally, we
link the instrumented binary with the VP library and run it
to collect our data.

There are two sources of imprecision in our methodology
for C programs. First, we assume that all references (ex-
cept references to local scalar variables whose address is not
taken) result in loads. This is potentially imprecise since a
compiler may be able to eliminate some references to non-
local or non-scalar variables [11] or may be unable to as-
sign some local scalar variables to registers. Since this work
is primarily concerned with understanding the behavior of
variables and not so much with evaluating the performance
impact of a load-value predictor or cache, we feel that this
simplification is acceptable. Second, our instrumentation of
high-level loads may perturb later compiler optimizations.
We have made careful choices in our instrumentation to mit-
igate this problem. For example, since passing parameters
consumes registers and thus affects register allocation, we
communicate all information between the instrumentation
and the VP library using a set of scalar global variables.

!The program counter values are not available in SUIF so
we sequentially number all the loads of the program and use
that as the program counter for our simulations.

The organization for Java programs is similar to that for C
programs except that we instrument using the Jikes RVM [4]
from IBM Research instead of SUIF and ATOM. We use the
two-generational copying garbage collector for Java. For our
experiments, Java programs differ from C programs in four
ways. First, Java programs have only scalar local variables,
which are usually allocated in registers. Thus, the classes
S__ are empty. Second, unlike in C programs, only objects
and arrays are allocated in the heap. Hence, the HSN and
HSP classes are empty for Java programs. Third, there are
no global arrays and global scalars in Java programs, and
thus classes GS_ and GA_ are empty. Fourth, we do not yet
have a convenient mechanism for measuring low-level loads
except for memory copies and therefore do not report data
for classes RA and CS.

3.3 The VP Library

For C programs, the VP library simulates the caches and
load-value predictors and determines the region of mem-
ory a load touches (i.e., stack, heap, or global space) by
examining the address of the load. While we can easily
determine an approximation to the region of loads in the
compiler [10], we opted to use a precise run-time classifica-
tion in order to avoid polluting our data with artifacts of an
imperfect points-to analysis. Our experience indicates that
the region of most loads stays constant across executions
of the load and thus a compile-time analysis should be effec-
tive at determining the region of loads. For Java programs,
the bytecode (such as aload) directly tells us the region of
memory a load accesses.

We simulate caches with a write-no-allocate policy, two-
way associativity, 64-bit word size and 32-byte block size.
We consider cache sizes of 16K, 64K, and 256K. We picked
these sizes because they are representative of L.1 data caches
for modern processors (e.g., 64K in the Alpha 21264, the
Athlon XP, and the UltraSPARC III, and 16K in the Pen-
tium IIT). We simulate value predictors of two sizes. (i) The
2048-entry predictors have 2048 entries in their tables. FCM
and DFCM have 2048 entries in both the first and second-
level tables. (ii) The infinite predictors have a sufficiently
large size to eliminate any conflicts.

3.4 Benchmarks

For C programs, we use programs from the SPECint95
[3] and SPECint00 [1] integer benchmark suites compiled on
an Alpha/OSF workstation for our measurements (Table 1).
For Java programs, we use programs from the SPECjvm98
[2] suite compiled on a PowerPC running Linux.? These
programs are well understood, non-synthetic, and compute-
intensive.

Table 2 shows the percentages of the measured loads that
fall into each of the 20 classes using the “reference” inputs
for the SPECint95 programs and the “train” inputs for the
SPECint00 programs. If a particular class makes up 2% or
more of the total references in a program, we highlight it
in bold. Note that all but four of the twenty classes make
up at least 2% of the total loads in at least one benchmark
program. Also, loads in some classes, for example GSN and
CS, occur frequently in the majority of the programs. Table
3 presents similar data for the Java benchmarks except that

2Unfortunately, since parts of our infrastructure are plat-
form specific, we could not run the C and Java programs on
the same architecture.
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Figure 1: Experimental setup
[ Program name | Source [ Description
compress SPECint95 Compresses and decompresses a file in memory
gce SPECint95 C compiler that builds SPARC code
go SPECint95 Plays the game of “GO”
ijpeg SPECint95 Compression and decompression of graphics
li SPECint95 Lisp interpreter
m88ksim SPECint95 Motorola 88000 chip simulator, runs a test program
perl SPECint95 Manipulates strings (anagrams) and prime numbers in Perl
vortex SPECint95 An object oriented database program
bzip2 SPECint00 Compression of an image
gzip SPECint00 Compression utility using LZ77
mcf SPECint00 Combinatorial optimizations
compress SPECjvm98 | Utility to compress/uncompress large files based on Lempel-Ziv method
jess SPECjvm98 | Java expert system shell based on NASA’s CLIPS expert system
raytrace SPECjvm98 | Single-threaded raytracer
db SPECjvm98 | Small data-management program on memory-resident databases
javac SPECjvm98 | The JDK 1.0.2 Java compiler
mpegaudio SPECjvm98 | MPEG-3 audio stream decoder
mtrt SPECjvm98 | Multi-threaded raytracer (calls raytrace)
jack SPECjvm98 | Parser generator with lexical analysis, early version of JavaCC

Table 1: Benchmark programs



some of the classes do not exist (Section 3.2). We use input
“sizel0” for Java benchmarks.

4. RESULTS

Section 4.1 presents our results for C programs and Sec-
tion 4.2 for Java programs. Section 4.3 validates our ob-
servations by comparing to results from a different set of
program inputs. When presenting results we omit data for
benchmark/class combinations if the class comprises less
than 2% of the references in the benchmark program.

4.1 Results for C Programs

Section 4.1.1 examines the behavior of our classes with
respect to data-cache performance. Section 41.2 presents
results for load-value predictor performance. Section 4.1.3
combines the cache and value-prediction results to explore
how value predictors perform on cache misses.

4.1.1 Cache Performance

Since cache misses benefit the most from latency tolerance
techniques, we start by examining the cache performance of
our classes. Figure 2 shows the average percentage of to-
tal cache misses incurred by each class. The “error” bars
present the highest and lowest percentage of cache misses for
each class. We picked this metric instead of the more tradi-
tional cache miss or hit rates because it emphasizes classes
that contribute most to cache misses rather than classes that
contribute few misses but have high miss rates. Later on we
also present cache hit rates.

For each class we only consider those benchmarks in which
the class makes up at least 2% of the references. Thus, the
sum of the bars of a given cache size often adds up to more
than 100%. To see how this happens, imagine that there are
two programs and two classes of loads such that each class
occurs in only one program and for that program makes up
100% of the cache misses. Then, both classes will have their
bars at 100%, and the sum of the two bars will add up to
more than 100% (namely 200%). Figure 2 has three bars
for each class for cache sizes of 16K, 64K, and 256K. For
example, looking at the 16K GAN bar we see that GAN
loads account (on average) for 43% of all the cache misses in
programs that have a non-trivial number of GAN loads. We
also see that the range for GAN reaches from contributing
nearly 0% to almost 100% of the cache misses, depending
on the program.

The numbers next to the class names along the horizontal
axis give the number of programs for which that class makes
up at least 2% of the total references. To put these numbers
in perspective, Table 4 gives the data-cache miss rates for
our benchmark programs.

From Figure 2 we see that the classes have fairly consistent
cache behavior across benchmark programs. In particular,
the vast majority of cache misses are in six classes: GAN,
HSN, HFN, HAN, HFP, and HAP. The other classes (e.g.,
the low-level classes) contribute little to the number of cache
misses. Table 5 gives the percentage of cache misses that
come from the six classes mentioned above.

Figure 3 presents the cache hit rates for each class using
cache sizes of 16K, 64K, and 256K. The “error” bars present
the range of hit rates for a class. The y-axis starts at 40% for
improved readability. We present cache hit rates rather than
miss rates to make the graph easily comparable to Figure 4.
From Figure 3 we see that the classes that account for the

Benchmark [ 16K [ 64K [ 256K ‘

compress 8.5 6.2 3.3
gcce 3.0 1.1 0.3
go 5.0 1.1 0.0
ijpeg 1.5 | 0.6 0.4
li 3.1 2.5 14
m88ksim 0.2 0.0 0.0
perl 0.9 0.0 0.0
vortex 1.6 0.7 0.3
bzip 2.0 1.9 1.6
gzip 5.8 2.6 0.1
mcf 27.2 | 25.1 21.5

Table 4: Load miss rates for data caches
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Figure 3: Cache hit rates for all loads (average over
all benchmarks, minimum, and maximum)

Benchmark [ 16K [ 64K [ 256K

compress 98 98 97
gce 78 83 85
go 86 88 94
ijpeg 95 98 98
li 69 74 7
m88ksim 41 7 100
perl 50 96 96
vortex 86 96 99
bzip 100 | 100 100
gzip 96 96 89
mcf 68 68 67

Table 5: Percentage of cache misses that come from
classes GAN, HSN, HFN, HAN, HFP, and HAP



Class [ compress [ gcc | go [ ijpeg | i [ m88ksim [ perl [ vortex [ bzip [ gzip [ mcf | mean |

SSN 0 1.28 3.50 0.42 4.40 12.10 6.23 7.26 0.12 0.15 0.15 2.97
SAN 0 0.63 1.01 | 16.61 0 0.45 2.58 0.00 || 12.73 0.01 0 2.84
SEN 0 0.67 0 3.62 0.00 0.30 0 2.60 0 0 0 0.60
SSP 0 0.37 0 0.17 1.40 0.00 0.00 0.33 0 0.02 0 0.19
SAP 0 0.25 0 0.17 0 0 0 0 0 0.00 0 0.04
SEP 0 0.29 0 0.25 0.01 0.24 2.15 0.05 0 0 0 0.25
HSN 0 0.88 0 | 14.75 3.51 0.00 8.07 7.32 0.27 0.01 0.20 2.92
HAN 0 7.39 0 | 48.55 0.00 0.00 4.30 5.39 | 31.83 0.00 2.75 8.35
HFN 0| 16.37 0 0.76 8.80 6.11 8.42 0.85 0 3.54 | 27.35 6.02
HSP 0 0.33 0 0.00 1.82 0.00 | 20.01 7.64 0 0 0 2.48
HAP 0 9.42 0 1.33 0.56 0 3.02 4.97 0 0 0.88 1.68
HFP 0 1.82 0 0.11 | 24.44 0.57 6.29 0.16 0 0.01 | 17.47 4.24
GSN 43.46 | 11.10 | 14.23 0.45 | 12.76 17.49 | 16.81 | 27.79 || 43.71 | 43.75 3.12 || 19.56
GAN 19.27 6.51 | 52.03 3.00 0.00 21.86 0.00 0.03 3.63 | 26.24 0 || 11.05
GFN 0 0.81 0 0.41 0.00 10.96 0.00 0.16 0 0.00 2.79 1.26
GSP 0 0.68 0 0.04 0.00 0.00 0.00 0.00 0 0 0.48 0.10
GAP 0 2.17 0.00 0.00 0.00 0.86 0.00 0.60 0.41 0.00 4.72 0.73
GFP 0 0.77 0 0.20 0.00 0.07 0.00 0.00 0 0.00 0.26 0.11
RA 7.65 5.16 3.68 0.91 8.84 4.58 4.11 4.60 0.76 2.52 7.29 4.17
CS 29.62 | 33.10 | 25.55 8.27 | 33.46 24.40 | 18.01 | 30.24 6.54 | 23.75 | 32.55 | 22.12

Table 2: Dynamic distribution of total references in C benchmarks runs (ref inputs for SPECint95, train
inputs for SPECint00)

[ Class | compress [ jess | raytrace | db [ javac [ mpegaudio | mtrt | jack [ mean |
GFN 0.14 3.20 0.87 1.73 | 14.43 0.39 0.36 3.65 3.10
GFP 1.53 0.76 0.40 0.42 1.57 2.00 0.42 0.82 0.99
HAN 14.68 2.36 3.38 | 15.66 | 11.28 32.42 4.49 2.43 | 10.84
HAP 0.07 | 18.01 13.38 9.69 1.88 11.36 | 11.68 | 11.37 9.68
HEFN 49.01 | 57.90 54.51 | 48.65 | 48.30 47.07 | 54.05 | 65.08 | 53.07
HFP 34.25 | 17.63 27.27 | 23.37 | 15.56 6.74 | 28.69 | 15.23 | 21.09
MC 0.31 0.13 0.19 0.46 6.97 0.02 0.29 1.42 1.23

Table 3: Dynamic distribution of total references in Java benchmarks runs (size 10 inputs for SPECjvm98)
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Figure 2: Contribution to cache misses by class (eleven programs)



vast majority of the loads (e.g., HFN) have low cache hit
rates compared to the other classes.

The above results indicate that we can use readily-available
compiler information to focus the mechanism for tolerating
load latency on only a few of the classes. The six classes
that contribute the most to the cache misses make up be-
tween 38% and 73% of the loads executed in the benchmarks
(arithmetic mean 55%). Moreover, in a 64K cache, these
classes account for 68% to 100% of the cache misses (arith-
metic mean 89%). In other words, it suffices to use mecha-
nisms such as load-value prediction on only about half the
loads, thus reducing conflicts in the predictor’s tables.

From the bars for the three cache sizes in Figure 2, we
see that as the cache size increases the contribution of a
particular class may decrease (e.g., GAN) or increase (e.g.,
HAN). This happens because increasing the cache size will
not necessarily remove the same percentage of misses from
all classes.

It is not surprising that the heap classes have poor cache
behavior, though to our knowledge, no one has demonstrated
this empirically. Class GAN performs poorly in the cache
because global arrays often hold hash tables that are ac-
cessed throughout the lifetime of the program.

4.1.2 Class Predictability

Tables 6 (a) and (b) show which predictors performs best
for each class. The Class column gives the name of the class.
The number in parentheses is the number of programs (out
of a total of eleven programs) for which this class makes up
at least 2% of the references. The tables omit classes that
make up less than 2% of the references in all the benchmarks.
The Lv, L4V, ST2D, FCM, and DFCM columns give the number
of benchmarks for which the predictor is predictability-wise
within 5% of the best predictor for the class. An empty en-
try means that the corresponding predictor does not perform
within 5% of the best predictor for any benchmark program.
A bold entry indicates that the corresponding predictor is
one of the most consistent predictors for the class. For ex-
ample, from Table 6 (a) we see that SSN makes up at least
2% of the references in five benchmark programs and DFCM
performs the best (or within 5% of the best) in these pro-
grams. Table 6 (a) presents data for 2048-entry predictors
and Table 6 (b) for infinite-size predictors.

Table 6 (b) shows that DFCM is the best predictor if the
predictor size is unlimited. For realistic predictor sizes,
DFCM (and to a lesser extent FCM) significantly outperforms
the other predictors particularly for pointer loads as well as
non-pointer loads from the stack. Since register allocators
eliminate the easily predictable loads from the stack (such
as references to induction variables), it is not surprising that
the simpler predictors (Lv, ST2D, and L4V) perform poorly
for non-pointer loads from the stack. Since register alloca-
tors are less effective at eliminating loads from the heap and
global space, enough simple load-value locality remains for
the simpler predictors to perform well.

For classes HAN, GSN, GFN, RA, and CS, the simpler
predictors (particularly L4V and ST2D) are comparable or
sometimes even better than the more complex predictors
(pFcM and FoM). Even when L4V and sT2D perform as well
but no better than FCM they may be preferable because they
require much simpler and smaller hardware. For class RA,
L4v is the most consistent realistic predictor (Table 6(a)).
Since RA represents the loads of return PC values, it is not

Class LV | L4V | ST2D | FCM | DFCM
SSN  (5) 1 2 2 1 5
SAN (3) T 1 1 2
SFN (2 1 2 2
SFP (1) 1
OSN (4 1 2 1 3 4
HAN (6) 2 2 4 4 5
HFN  (6) 2 3 2 4 6
HSP (2 1 1 1 2 2
HAP (3) 1 2 2
HFP (3) 1 2 3
GSN  (10) 2 2 8 2 7
GAN (7) 3 3 4 5 5
GFN  (2) 1 1 1 1 1
GAP (2) 1 2 2
RA (9) 5 8 5 4 4
CS (11) 2 3 7 1 9

(a) 2048

Class LV | L4V | ST2D | FCM | DFCM
SSN (5) 1 1 1 5 5
SAN  (3) 1 3
SFN (2 1 1 2
SFP (1) 1
HSN  (4) 2 4
HAN (6) 1 5 6
HFN  (6) 5 6
HSP (2 1 1 1 2 2
HAP (3) 1 2 3
HFP (3) 3 3
GSN (10) | 1 1 4 6 10
GAN (7) 1 1 1 6 6
GFN (2 T T 1 2 2
GAP (2) 2 2
RA 9) 2 4 2 8 9
CS (1) 2 7 11

(b) infinite

Table 6: Best predictor for predictor sizes 2048 and
infinite. Inputs: ref for SPECint95 and train for
SPECint00 (eleven programs)

Class Number of benchmarks
SSN  (5) 4
SAN (3) 1
SFN (2) 1
SFP (1) 1
HSN (4) 2
HAN (6) 3
OFN  (6) 1
HSP (2) 2
HAP (3) 2
HFP  (3) 2
GSN  (10) 9
GAN (7) 2
GFN (2) 1
GAP (2) 0
RA (9) 6
CS (11) 7

Table 7: Number of benchmarks for which the best
2048-entry predictor for the class predicts more than
60% of the loads (eleven programs)



surprising that RA loads take on one of the last few values
of the load. If a procedure is always called from the same
site, then even Lv or sT2D will be effective at predicting RA
loads (and indeed for some of the programs, sT2D and LV
work quite well).

DFCM and ST2D are the best predictor for CS (Table 6
(a)). Note, however, that FCM performs relatively poorly on
CS (it is the best predictor for CS for only one benchmark
program). CS is an unusual class because members of this
class have mixed types. For example, imagine a procedure
that uses register r1 and is called from two call sites. When
it is called from the first call site r1 may contain a pointer
and when it is called from the second call site r1 may con-
tain an integer. The integer may be an induction variable
and thus favor ST2D since compilers eagerly allocate induc-
tion variables to registers. The pointer, on the other hand,
will most likely favor FCM or DFCM. Thus, DFCM performs
well on CS because it can predict both strides and repeated
traversals through linked data structures.

Figure 4 presents the average percentage of correct pre-
dictions for each class using the five load-value predictors.
Taller bars in Figure 4 are better. For some classes, such
as SSP, there are no bars since these classes make up less
than 2% of the total references in all benchmark programs.
Table 7 presents for each class the number of benchmarks
where the best value predictor for that class can correctly
predict at least 60% of the references in that class. Figure 4
and Table 7 together suggest that some classes are more pre-
dictable than others. For example, GAN appears in seven
benchmark programs, but in only two of them is a predictor
able to predict more than 60% of the GAN references. On
the other hand, GSN appears in ten benchmark programs
and in nine of them a predictor is able to correctly predict
more than 60% of the GSN references.

Comparing Figures 4 and 3 we see that classes that suf-
fer from low hit rates in caches (e.g., classes HFN, HFP,
and GAN) also often suffer from low predictability in value
predictors.

To summarize, we observe that some classes are much
more predictable than others. Moreover, for the predictable
classes, there is usually a realistic predictor that performs
best for most of the benchmarks. Given this consistency of
predictor performance, it should be possible to build an ef-
fective hybrid predictor that uses static instead of dynamic
predictor selection. After all, the classes for which the sim-
pler predictors perform almost as well or even better than
FCM and DFCM represent over a quarter of all loads. We
further note that classes that perform poorly for caches also
perform poorly for load-value prediction.

4.1.3
Analysis

We now consider how to use our results from Section 4.1.1
and 4.1.2 to improve the performance of programs. The
full benefit will be greater once we consider more uses of the
results, such as for prefetching.

Figure 5 gives the performance of load-value prediction on
loads that miss in a 64K cache. A predictor with a taller
bar performs better than one with a shorter bar. We use
the 2048-entry configurations for all load-value predictors.
To speed up simulations, we ignored the low-level loads in
these experiments since they rarely miss in the cache. Fig-
ure 5 presents results only for the classes that cause the
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Figure 6: Prediction rates for loads missing in cache
and designated by compiler to be predicted (average
over all benchmarks, minimum and maximum)

majority of the cache misses. The “error” bars give the min-
imum and maximum correct predictions across our bench-
mark programs. On inspecting the data we noted that the
low and high points of the predictors matched up. For ex-
ample, when one predictor performed its worst for a class
in a benchmark, it was usually the case that the other pre-
dictors also performed their worst for that same class and
benchmark.

Figure 5 shows that FCM and DFCM perform about the
same or slightly worse than the simpler predictors on the
loads that miss in the cache. This is surprising because
in Section 4.1.2we saw that DFCM is one of the strongest
predictors when we consider all loads. For example, FCM
and DFCM perform much better than the other predictors
on class HAP (Figure 4), but when we consider only cache
misses, the simpler predictors perform slightly better than
FCM and DFCM. In other words, FCM and DFCM, despite
their relative complexity, are outperformed by the simpler
predictors on the loads that matter the most.

One explanation for the relatively poor performance of
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Figure 4: Prediction rates for all loads (average over all eleven benchmarks, minimum, and maximum)

FCM and DFCM is that their tables are not large enough.
To determine if this is the case, we increased the size of
the FCM and DFCM from 2048 entries to practically infinite
tables. With infinite tables, DFCM and FCM perform better
than the simpler predictors. In other words, if it is possible
to build a really large predictor, FCM and DFCM may be
preferable to the simpler predictors. Otherwise, the simpler
predictors perform just as well (and sometimes even better)
than FCM and DFCM. It is also worth keeping in mind that
a 2048-entry FCM or DFCM will be larger and more complex
than a 2048-entry ST2D.

Figure 6 is similar to Figure 5 except that we use compiler
information to predict only loads in the classes that account
for most of the misses in the cache. Comparing Figure 6 to
Figure 5, we see that there is a modest benefit to filtering
loads, i.e., preventing them from accessing the predictor.
For example, LV correctly predicts up to 3% more cache
misses if only classes HAN, HFN, HAP, HFP, and GAN
access the predictor. Reducing predictor accesses eliminates
conflicts and thus allows predictors to be more effective on
the remaining accesses.

To understand how the cache size affects our results, we
repeated the above experiments with a 256K cache instead
of a 64K cache. A 256K cache should have fewer misses than
a 64K cache and thus use the load-value predictor for fewer
loads. Interestingly, we found that the relative performance
of the predictors did not change. However, the percentage
of correct predictions for the predictors improved by several
percent over Figure 6.

The above results use filtering based on which loads are

important with respect to the cache. However, another kind
of filtering is also possible: filtering out loads that are poorly
predicted with value predictors because they provide little
potential (and possibly significant harm from the mispredic-
tion penalties) for speculation. When we stopped predicting
class GAN because it is by far the least predictable of the
classes in Figure 6, our results improved: most of the pre-
dictors performed better (by up to 7%) than in Figure 6
because there were fewer conflicts in the predictors’ tables.

4.2 Results for Java programs

In Section 4.1 we demonstrated for C programs that our
load classes are useful in separating loads that frequently hit
in the cache from loads that frequently miss in the cache. We
cannot, however, meaningfully use the same classification for
Java programs for two reasons. First, the vast majority of
loads in Java programs are from the heap® (Table 3) and
thus the distinction between heap and non-heap loads is not
interesting. Second, our current framework for Java pro-
grams misses loads in some low-level classes, which causes
the heap loads to dominate the behavior even more. For
these reasons, we only report a partial set of results for Java
programs.

When we consider the value predictability of all loads, the
relative performance of the predictors is similar to that of
C programs. DFCM usually has the best predictability and
FCM the second-best predictability. However the difference

30ur traces do not contain all the low-level loads in Java
programs. The balance between heap and non-heap loads
may be different in a full memory trace.



between the context-based predictors (DFCM and FCM) and
the other predictors (e.g., Lv) are not as dramatic as with
C programs. The only class for which FCM and DFCM are
much better is HAP, where DFCM predicts 80% of the loads
correctly, FCM predicts 60% of the loads correctly, and the
other predictors are at least 10% worse than FCM.

When we consider the value predictability of loads that
miss in the cache, we see a similar behavior to C programs:
DFCM and FCM offer little benefit over the simpler predictors
and for all classes except HAP and HFP, one of the simpler
predictors outperforms both DFCM and FCM.

We also conducted an experiment using a different in-
frastructure that provides a trace of all loads for Java pro-
grams (including loads that are missing in the above re-
sults). By instrumenting at the very end of optimizing
compilation, even after register allocation, we are able to
trace all loads including loads belonging to the classes CS
and RA. However, at this late phase of compilation, we do
not have enough information to reliably partition loads into
classes and thus, we report only overall performance. Our
results using these traces are consistent with our other re-
sults. In particular, we found that when we consider only
cache misses, the simpler predictors are close in performance
to DFCM and FCM. More specifically, the simpler predic-
tors perform much better (by at least 10%) than DFCM and
FCM for one benchmark (mpegaudio) and slightly better (by
less than 5%) for one benchmark (compress). DFCM or FCM
perform much better than the simpler predictors for two
benchmarks (db and mtrt) and only slightly better for the
remaining four benchmarks.

4.3 Validation

To ensure wide applicability of our results, we conducted
our experiments on a variety of programs written in C and
Java. As noted above, our results are consistent across the
two programming languages; for example DFCM is the best
predictor for pointer loads in both Java and C programs.

We also repeated many of our experiments with C pro-
grams using another set of inputs and computed tables sim-
ilar to Table 6. We found that while the absolute numbers
differed, our main conclusions were the same: a predictor
that performs well (poorly) with one set of inputs also per-
forms well (poorly) with a different set of inputs.

5. RELATED WORK

We first describe related work in load-value prediction and
then related work in cache performance.

5.1 Load-Value Prediction

Two independent research efforts [14, 20] first recognized
that load instructions exhibit wvalue locality and concluded
that there is potential for prediction.

Lipasti et al. [20] investigated why load values are often
predictable and studied the predictability of different kinds
of load instructions. They found that while all loads exhibit
significant value predictability, address loads have slightly
better value locality than data loads, instruction address
loads hold an edge over data address loads, and integer data
values are more predictable than floating-point data values.
Our approach separates loads into many more classes that
exhibit greatly varying predictability behavior.

Gabbay and Mendelson [15] explore the possibility of us-
ing program profiles to enhance the efficiency of value pre-

diction. They use profiling to insert opcode directives to
filter out highly unpredictable values from being allocated
in the load-value predictor, which considerably reduces the
amount of aliasing. Our approach of filtering loads based on
how important and predictable they are achieves the same
goal without the need for profiling. Furthermore, Gabbay
and Mendelson found that training runs generally correlate
with test runs, indicating that a program’s input values do
not significantly affect the value locality. A more detailed
study about predictability by Sazeides and Smith [28] illus-
trates that most of the locality originates in the program
control structure and immediate values, which explains the
observed independence of program input. Our methodology
can also be used with profiles. Profiling may, however, result
in insufficient data to classify loads that are never or hardly
ever executed during the profile run. Our static approach
does not suffer from this problem.

Rychlik et al. [25] address the problem of useless predic-
tions. They introduce a simple hardware mechanism that
inhibits predictions that were never used (because the true
load value became available before the predicted value was
consumed) from updating the predictor, which results in
improved performance due to reduced predictor pollution.
This filtering is complementary to the filtering with our
compiler-based approach.

Fu et al. [13] propose a mixed hardware- and software-
based approach to value speculation that leverages advan-
tages of both hardware schemes for value prediction and
compiler schemes for exposing instruction-level parallelism.
They propose adding new instructions to explicitly load val-
ues from the predictor and to update the predictor. Our ap-
proach does not require any new instructions and is geared
towards hybrid predictors. While the approach of Fu et
al. supports hybrids, they defer the problem of which com-
ponent to select to the hardware. Static classification, as
presented in this paper, can be used to accomplish this in
software.

Calder et al. [9] examine selection techniques to minimize
predictor capacity conflicts by prohibiting unimportant in-
structions from using the predictor. At the same time, they
classify instructions depending on their latency so that the
confidence threshold can be adapted to the potential gain
of predicting a given instruction. Hence, operations with
small gains are only predicted if the predictor’s confidence
is very high, whereas operations with potentially large gains
are predicted even if the confidence is rather low. Interest-
ingly, they found that loads are responsible for most of the
latency in the critical path and hence predicting only loads
represents a good filtering criterion. We implicitly use this
criterion because we only predict load values. Note that
Calder et al. classify loads by latency while we classify by
type of memory access.

Morancho et al. [21] propose separating the confidence
estimator from the predictor so that only the confidence es-
timator has to be large enough to handle “all” load instruc-
tions, whereas the predictor itself can be designed smaller
because it only has to hold the predictable loads. By per-
forming confidence pre-estimation at compile time, our ap-
proach allows both the value predictor and the confidence
estimator to be designed smaller because they only have to
be large enough to hold the predictable loads.

The literature describes several hybrid value predictors.
For example, Wang and Franklin propose a hybrid between



a last-distinct-four-value and a stride predictor [31], Rychlik
et al. use a finite context method and stride 2-delta hybrid
[25], and Burtscher and Zorn propose a three-component
hybrid that includes a register file, a stride, and a last three
value component [8]. The data in this paper suggests that
the best predictor for a load can often be picked at compile
time rather than at run time in hardware.

5.2 Cache Performance

While there has been significant prior work in understand-
ing the cache behavior of programs, we are not aware of any
study that correlates cache behavior to high-level proper-
ties such as types. Some prior work tries to understand and
improve the cache behavior of heap loads by measuring the
cache impact of garbage collection [12, 18, 23, 30, 32, 33].

Mowry and Luk [22] also attempt to improve the effective-
ness of latency-tolerance techniques by applying them only
to cache misses. They identify instructions that are likely to
miss in the cache using correlation profiling, which, for in-
stance, predicts whether a load will hit or miss in the cache
based on whether previous loads hit or miss in the cache.
Rather than using profiling (particularly on-line profiling),
our approach uses static properties to predict whether or
not a load will miss. The advantage of Mowry and Luk’s ap-
proach when compared to ours is that it can adapt dynami-
cally if a load’s behavior changes during a run. They present
numbers in their paper only for the loads that they use cor-
relation profiling on (the top 15 loads in terms of misses)
and thus we cannot directly compare our accuracy to theirs.
However, the disadvantage of their approach is that it incurs
run-time overhead and requires additional hardware to col-
lect and act on the correlation profiles. Our approach has no
run-time overhead besides the cost of incorrect predictions.
We believe that the two techniques are complementary and
it would be interesting to compare and combine the two.

6. CONCLUSIONS

We show that a compiler can divide a program’s load
instructions into classes that exhibit consistent cache and
value-predictability behavior. For example, most (arith-
metic mean 89%) of the cache misses stem from six classes
that represent an average of 55% of the loads in our bench-
mark programs. Moreover, our classes are largely consistent
with respect to load-value predictability: the best predictor
for each class seems to be independent of the program.

Interestingly, we found that load-value predictors behave
quite differently on loads that miss in the cache than on
loads that hit. In particular, predictors such as the rcMm and
DFCM, which are believed to be the best predictors in the
literature, actually perform well only on loads that hit in the
cache. For loads that miss, these more complex predictors
are no better than the much simpler ones. In other words,
for the loads that need speculation the most, the simpler,
smaller, and faster predictors perform as well as the more
complex predictors.

We use our results to determine at compile time which
loads to speculate. More specifically, we only speculate loads
from classes that miss frequently in the cache and that are
predictable. This approach improves the predictor accuracy
by up to 8% on the loads that cause cache misses, i.e., on
the loads that matter the most.
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