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Abstract
Irregular programs are programs organized around pointer-based
data structures such as trees and graphs. Recent investigations
by the Galois project have shown that many irregular programs
have a generalized form of data-parallelism called amorphous
data-parallelism. However, in many programs, amorphous data-
parallelism cannot be uncovered using static techniques, and its
exploitation requires runtime strategies such as optimistic parallel
execution. This raises a natural question: how much amorphous
data-parallelism actually exists in irregular programs?

In this paper, we describe the design and implementation of a
tool called ParaMeter that produces parallelism profiles for irreg-
ular programs. Parallelism profiles are an abstract measure of the
amount of amorphous data-parallelism at different points in the ex-
ecution of an algorithm, independent of implementation-dependent
details such as the number of cores, cache sizes, load-balancing,
etc. ParaMeter can also generate constrained parallelism profiles
for a fixed number of cores. We show parallelism profiles for seven
irregular applications, and explain how these profiles provide in-
sight into the behavior of these applications.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Algorithms, Languages, Performance

Keywords Optimistic Parallelism, Profiling, Parallelism Profiles

1. Introduction
A theory is something nobody believes, except the person
who invented it. An experiment is something everybody
believes, except the person who did it.

—Albert Einstein

Over the past twenty-five years, the parallel programming commu-
nity has developed a deep understanding of the opportunities for
exploiting parallelism in regular programs organized around dense
vectors and matrices, such as matrix factorizations and stencil com-
putations. The bulk of the parallelism in these programs is data-
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parallelism, which arises when an operation is performed on dis-
joint subsets of data elements of vectors and matrices. For example,
in multiplying two N × N matrices using the standard algorithm,
there are N3 multiplications that can be executed concurrently
as well as N2 independent additions of N numbers each. Data-
parallelism in regular programs is independent of the data values
in the computations, so it usually manifests itself in FORTRAN-
style DO-loops in which iteration independence can be statically
determined. Thanks to several decades of research, we now have
powerful tools based on integer linear programming for finding and
exploiting data-parallelism in regular programs [16].
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Figure 1. Active elements and neighborhoods

In contrast, we understand relatively little about the patterns of
parallelism and locality in irregular programs, which are organized
around pointer-based data structures such as trees and graphs. Re-
cent case studies by the Galois project have shown that many irreg-
ular programs have a generalized form of data-parallelism called
amorphous data-parallelism [20]. To understand this pattern of par-
allelism, it is useful to consider Figure 1, which is an abstract rep-
resentation of an irregular algorithm. Typically, these algorithms
are organized around a graph that has some number of nodes and
edges; in some applications, the edges are undirected while in oth-
ers, they are directed. At each point during the execution of an
irregular algorithm, there are certain nodes or edges in the graph
where computation might be performed. Performing a computa-
tion may require reading or writing other nodes and edges in the
graph. The node or edge on which a computation is centered is
called an active element. To keep the discussion simple, we assume
from here on that active elements are nodes. Borrowing terminol-
ogy from the literature on cellular automata, we refer to the set of
nodes and edges that are read or written in performing the compu-
tation at an active node as the neighborhood of that active node.
Figure 1 shows an undirected graph in which the filled nodes repre-
sent active nodes, and shaded regions represent the neighborhoods
of those active nodes. Note that in general, the neighborhood of an
active node is distinct from the set of its neighbors in the graph.
In some algorithms, such as Delaunay mesh refinement [5] and
preflow-push algorithm for maxflow computation [6], there is no
a priori ordering on active nodes, and a sequential implementation



is free to choose any active node at each step of the computation. In
other algorithms, such as event-driven simulation [22] and agglom-
erative clustering [25], the algorithm imposes an order on active
elements, which must be respected by the sequential implementa-
tion. Both kinds of algorithms can be written using worklists to
keep track of active nodes.

We illustrate these notions using Delaunay mesh refinement [5].
The input to this algorithm is a triangulation of a region in the
plane such as the one in Figure 2(a). Some of the triangles in the
mesh may be badly shaped according to certain shape criteria (these
triangles are colored black in Figure 2). If so, an iterative refinement
procedure, outlined in Figure 3, is used to eliminate them from
the mesh. In each step, the refinement procedure (i) picks a bad
triangle from the worklist, (ii) collects a number of triangles in
the neighborhood (called cavity) of that bad triangle (lines 6-7
in Figure 4), shown as shaded regions in Figure 2, and (iii) re-
triangulates the cavity (lines 8-9). If this re-triangulation creates
new badly-shaped triangles, they are added to the worklist (line 10
in Figure 4). The shape of the final mesh depends on the order in
which the bad triangles are processed, but it can be shown that every
processing order terminates and produces a mesh without badly-
shaped triangles. To relate this algorithm to Figure 1, we note that
the mesh is usually represented by a graph in which nodes represent
triangles and edges represent triangle adjacencies. At any stage in
the computation, the active nodes are the nodes representing badly
shaped triangles and the neighborhoods are the cavities of these
triangles. In this problem, active nodes are not ordered.

From this description, it is clear that bad triangles whose cavi-
ties do not overlap can be processed in parallel. However, the par-
allelism is very complex and cannot be exposed by compile-time
program analyses such as points-to or shape analysis [13, 24] be-
cause the dependences between computations on different worklist
items depend on the input mesh and on the modifications made to
the mesh at runtime. To exploit this amorphous data-parallelism,
it is necessary in general to use speculative or optimistic parallel
execution [20]: worklist items are processed concurrently by dif-
ferent threads, but to ensure that the semantics of the sequential
program are respected, the runtime system detects dependence vio-
lations between concurrent computations and rolls back conflicting
computations as needed.

This paper addresses the following question: how much par-
allelism is there in applications that exhibit amorphous data-
parallelism? This information is useful for understanding the nature
of amorphous data-parallelism, for making algorithmic choices for
a given problem, for choosing scheduling policies for processing
worklist items, etc. Speedup numbers on real machines do not ad-
dress this question directly since speedups depend on many factors
including cache miss ratios, and communication and synchroniza-
tion overheads. The amount of amorphous data-parallelism in ir-
regular programs is usually dependent on the input data and varies
in complex ways during the computation itself, as is the case for
Delaunay mesh refinement, so analytical estimates are not possible.
Therefore, we need a better approach to measure and express the
parallelism of irregular programs.

This paper describes a tool called ParaMeter that uses instru-
mented execution to generate parallelism profiles of irregular pro-
grams. Intuitively, these profiles show how many (non-conflicting)
worklist items can be executed concurrently at each step of the al-
gorithm, assuming an idealized execution model in which (i) there
are an unbounded number of processors and (ii) each worklist item
takes roughly the same amount of time to execute (this is true in all
our applications). ParaMeter also provides an estimate of the length
of the critical path through the program under these assumptions.
ParaMeter can also use information from the unbounded-processor
parallelism profile to provide an estimate of the parallelism profile

(a) Unrefined Mesh (b) Refined Mesh

Figure 2. Mesh refinement.

1: Mesh mesh = /* read in initial mesh */
2: WorkList wl;
3: wl.add(mesh.badTriangles());
4: while (wl.size() != 0) {
5: Triangle t = wl.get(); //get bad triangle
6: if (t no longer in mesh) continue;
7: Cavity c = new Cavity(t);
8: c.expand();
9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12:}

Figure 3. Pseudocode of the mesh refinement algorithm.

if some fixed number of processors are used to execute the program.
Although ParaMeter uses the Galois infrastructure [20], the paral-
lelism profiles it produces are independent of the infrastructure, and
provide estimates of the amount of amorphous data-parallelism in
the algorithm.

The remainder of this paper is organized as follows. Section 2
presents our notation for describing algorithms with amorphous
data-parallelism. This notation was introduced in our earlier work
on the Galois system [20]. Section 3 discusses metrics for estimat-
ing parallelism in programs. Section 4 describes how the ParaMeter
tool is implemented. Section 5 analyzes the output of ParaMeter for
seven irregular programs. Section 6 presents related work. We con-
clude in Section 7.

2. Program Notation and Execution Model for
Amorphous Data-Parallelism

In this section, we briefly describe the programming notation and
execution model for amorphous data-parallelism that we will use
throughout this paper.

The programming model is a generic, sequential, object-oriented
programming language such as Java augmented with two Galois set
iterators:

• Unordered-set iterator: for each e in Set S do B(e)
The loop body B(e) is executed for each element e of set S.
Since set elements are not ordered, this construct asserts that in
a serial execution of the loop, the iterations can be executed in
any order. There may be dependences between the iterations,
but any serial order of executing iterations is permitted. As an
iteration executes, it may add elements to S.

• Ordered-set iterator: for each e in Poset S do B(e)
This construct iterates over a partially-ordered set (Poset) S. It
is similar to the Set iterator above, except that any execution
order must respect the partial order imposed by the Poset S.

The use of Galois set iterators highlights opportunities in the
program for exploiting amorphous data-parallelism. Figure 4 shows
pseudocode for Delaunay mesh refinement, written using the un-
ordered Galois set iterator. The unordered-set iterator implements
“don’t care non-determinism” [7] because it is free to iterate over
the set in any order, and it allows the runtime system to exploit the
fact that the Delaunay mesh refinement algorithm allows bad trian-
gles to be processed in any order. This freedom is absent from the



1: Mesh mesh = /* read in initial mesh */
2: Worklist wl;
3: wl.add(mesh.badTriangles());
4: for each Triangle t in wl do {
5: if (t no longer in mesh) continue;
6: Cavity c = new Cavity(t);
7: c.expand();
8: c.retriangulate();
9: mesh.update(c);
10: wl.add(c.badTriangles());
11:}

Figure 4. Delaunay mesh refinement using a set iterator.

Figure 5. The computation DAG of (a1 ∗ b1) + (a2 ∗ b2).

more conventional code in Figure 3, which constrains parallelism
unnecessarily.

The execution model is the following. A master thread begins
executing the program. When this thread encounters a Galois set it-
erator, it enlists the assistance of some number of worker threads to
execute iterations concurrently with itself. The assignment of iter-
ations to threads is under the control of a scheduling policy imple-
mented by the runtime system. All threads are synchronized using
barrier synchronization at the end of the iterator. Iterators may con-
tain nested iterators, and the current Galois execution model “flat-
tens” inner iterators, always executing them sequentially. The run-
time system also performs conflict detection and resolution [20].
For ordered set iterators, the runtime system ensures that the itera-
tions commit in the set order. We have used the Galois system to au-
tomatically parallelize a number of complex irregular applications
including Delaunay mesh generation, mesh refinement, agglomer-
ative clustering, image segmentation using graph cuts, etc. [19] for
multicore processors. Although the speedup numbers from these
experiments are useful, we note that they do not provide insight
into how much parallelism there is to be exploited in irregular pro-
grams.

3. Parallelism in Programs
Parallelism in a program can be measured at different levels of
granularity, ranging from the instruction level [1, 26] to the level of
entire iterations or method invocations [2, 8]. For a given granular-
ity level, parallelism is determined by generating a directed acyclic
graph (DAG) in which nodes represent computations at that gran-
ularity level, and edges represent dependences between computa-
tions. To simplify the discussion, the nodes in the DAG are often
assumed to take the same amount of time to execute.

3.1 Instruction-level parallelism
To introduce the key ideas, we use the relatively simple context of
instruction-level parallelism in regular programs. Figure 5 shows an
instruction-level DAG for the inner product of two vectors of length
two. The maximum parallelism in this example is four. Moreover,
because every path from a load to the addition contains three
nodes, it will take three time units to perform this computation,
assuming that each operation takes one time unit, even if there are
an unbounded number of processors.

The longest path through the DAG is called the critical path (or
the span) of the DAG. The length of the critical path is a lower
bound on the execution time of the computation. If there are an
unbounded number of processors and operations are scheduled as

Figure 6. Parallelism profiles for the dot-product code.

early as possible, the width of the DAG at any level reflects the
instantaneous parallelism, i.e., the amount of available parallelism
at a specific step, and the average width determines the average
available parallelism.

The dataflow community has long used parallelism profiles [1]
to visualize these kinds of execution metrics. The parallelism pro-
file for a dataflow graph is a function pp(t), which is the number of
dataflow operators executed in each step t on an idealized dataflow
machine that has the following characteristics: (i) all dataflow oper-
ators take unit time, (ii) any number of operations can be performed
in a single step, (iii) communication is instantaneous, and (iv) each
operator executes as early as possible. The parallelism profile there-
fore represents a system-agnostic measure of how much parallelism
an application has, independent of data locality, synchronization
and communication overheads, etc. It provides important informa-
tion such as whether it is profitable to run an application in parallel
and, if so, how many processors we might allocate to its execution.
For example, the parallelism profile of the dot-product computa-
tion in Figure 6(a) shows that it is useless to allocate more than
four processors.

Parallelism profiles can also be generated for a fixed number of
processors, provided a scheduling policy for selecting operations
for execution at each step is specified [1]. We refer to this as
the constrained parallelism profile. This information is useful to
see how changing the number of processors changes parallelism
behavior. Cilk, a language for writing task-parallel applications,
uses a similar idea to estimate how much parallelism is available
in a task DAG and how that parallelism can be exploited by a given
number of processors [2, 8]. In the case of the dot product, the
constrained parallelism profiles in Figure 6(b) and 6(c) reveal that
using two or three CPUs results in the same runtime of four steps,
but the utilization is better with two processors.

3.2 Amorphous data-parallelism
In this paper, we are interested in measuring the loop-level paral-
lelism in the execution of Galois set iterators. At a high level, this
can be accomplished by generating a computation DAG, similar
to that of Figure 5, in which nodes represent iterations. However,
it is important to realize that the behavior of irregular programs
is vastly more complex than the behavior of the simple program
shown in Figure 5 or even of dataflow programs. In these domains,
the computation DAG for a program depends only on the input to
the program and is independent of the execution schedule for those
computations. Moreover, for many regular programs such as the
BLAS kernels and most matrix factorization codes, the computa-
tion DAG usually depends on the size of the input but not the input
values.

In contrast, the behavior of an amorphous data-parallel program
is usually dependent not only on input values but also on the exe-
cution schedule of the computations, even for an unbounded num-
ber of processors. This is because an amorphous data-parallel pro-
gram has a computation graph rather than a computation DAG:
conflicting computations can be performed in any order, at least
for unordered set iterators. Executing an amorphous data paral-
lel program thus requires choosing an order to perform conflicting



Figure 7. Parallelism graph with multiple resulting schedules.

computations. Scheduling conflicting tasks is equivalent to turning
the computation graph into a computation DAG. However, different
schedules of execution can produce different DAGs that have differ-
ent parallelism profiles. Figure 7 shows an example in the context
of Delaunay mesh refinement. If cavity B overlaps with cavities A
and C, we cannot execute all three computations in one step, and
the parallelism profile depends on scheduling choices even with an
unbounded number of processors, as shown in Figures 7(b,c).

The previous example is relatively simple as the structure of
the computation graph did not depend on scheduling decisions. In
general, processing one piece of work may create new work or
invalidate existing pieces of work. If a bad triangle B is in the cavity
of another bad triangle A, processing A first will eliminate triangle
B from the mesh. However, if triangle B is processed first, it may
create other bad triangles, and depending on the schedule, these
newly created bad triangles may be processed before triangle A is
processed. The key issue is that the number of nodes and edges
in the computation graph can change throughout the execution.
Thus, there is no single “snapshot” of computation from which
parallelism can be determined.

To sum up, amorphous data parallelism introduces two wrinkles
to the standard notion of using DAGs to compute parallelism. First,
there is the problem of schedule dependence: different execution
orders produce different parallelism profiles. Second, there is the
problem of evolving computation: the computation graph in an
amorphous data parallel program changes dynamically.

3.3 Parallelism intensity
While parallelism profiles show the absolute amount of available
parallelism, they do not reveal the full story. Consider two irregular
programs, one with a worklist containing 1000 elements and the
other with a worklist of 100 elements. Further, suppose that initially
both programs have 100 elements that can be executed in parallel.
From the perspective of available parallelism, both programs are
identical. However, there is clearly a qualitative difference in the
parallelism available in the two programs: the first program has
little parallelism compared to the amount of work, while the second
program is embarrassingly parallel.

What a parallelism profile does not capture is the amount of
parallelism relative to the total amount of work that needs to be
performed. We express this ratio using a metric called parallelism
intensity. To compute this metric, we divide the amount of available
parallelism by the overall size of the worklist at every point in the
computation. Parallelism intensity is useful for choosing schedul-
ing policies; for example, if the parallelism intensity is high, work
can be picked at random from the worklist, but if the intensity is
low, a random policy might result in frequent rollbacks because of
conflicts [18].

4. The ParaMeter Tool
To handle the complexities inherent in profiling parallelism in ir-
regular programs, we have developed a tool called ParaMeter. Para-
Meter can profile irregular programs with both ordered and un-
ordered amorphous data-parallel loops. By using instrumentation
and an execution harness, ParaMeter is able to generate parallelism

profiles for data parallel loops, measure parallelism intensity and
model constrained parallelism.

As we outlined in the previous section, the highly dynamic and
schedule-dependent nature of the computation DAGs of irregular,
amorphous data-parallel programs makes it infeasible to generate
a canonical parallelism profile for such applications. To tackle this
problem, we first abandon the goal of an input-independent metric.
Thus, the parallelism profiles ParaMeter generates for a program
are input-dependent. In general, a profile may be valid for a class
of inputs that behave similarly (for example, randomly generated
input meshes for DMR), but will not be valid for all inputs.

Having accepted input dependence as a requirement for paral-
lelism profiles, the second obstacle to generating parallelism pro-
files is the schedule dependence of irregular programs. Recall that
in irregular programs, many edges in the computation graph may
be undirected. Scheduling is the act of choosing directions for
those edges, and different choices may lead to dramatically dif-
ferent DAGs. Furthermore, executing a node in a DAG may lead to
the creation of additional DAG nodes. ParaMeter solves these prob-
lems by adopting two policies: greedy scheduling and incremental
execution. Greedy scheduling means that at each step of execution,
ParaMeter will try to execute as many elements as possible. This is
equivalent to finding a maximally independent set of nodes in the
computation graph. Thus, given the computation graph in Figure
7(a), ParaMeter would choose the schedule in Figure7(c) over the
schedule shown in Figure 7(b).

To accommodate newly generated work, ParaMeter performs
incremental execution. After performing greedy scheduling to de-
termine which elements to execute in a computation step, Para-
Meter fully executes them and adds any newly generated work to
the computation graph. Thus, the next step of computation will be
scheduled taking work generated in the previous step into account.

Conceptually, ParaMeter generates parallelism profiles by sim-
ulating the execution of a program on an infinite number of pro-
cessors. Each computation step can be thought of as two phases:
an inspection phase, which generates the computation graph from
the current state of the worklist and identifies a maximal indepen-
dent set of elements to execute, and an execution phase, which ex-
ecutes that independent set and sets up the worklist for the next
step. Because generating an explicit conflict graph at each step is
often computationally infeasible, the implementation of ParaMeter
instead interleaves the inspection and execution phases while im-
plicitly building the conflict graph. This procedure is explained in
detail for unordered loops in Section 4.1. Section 4.2 discusses the
changes required to profile ordered loops. We then discuss how we
can use ParaMeter to determine parallelism profiles and other mea-
sures of parallel performance in Section 4.3.

4.1 Unordered loops
An intuitive approach to finding a maximal independent set of tasks
to execute in a computation step is to examine the worklist, build
a computation graph and find a maximal independent set in that
computation graph. However, maintaining an explicit computation
graph can be very expensive; in many scenarios, the worklist might
contain tens of thousands of nodes, each of which may conflict
with many other nodes. Representing such a graph can require large
amounts of memory, and re-building the graph at each step can be
computationally expensive1.

ParaMeter uses a different approach. The algorithm shown in
Figure 8. At each step, ParaMeter chooses a worklist element e
at random (line 6) and executes it speculatively (line 7). Para-
Meter utilizes the machinery of the Galois system [20] to perform

1 Nevertheless, some parallel implementations of Delaunay mesh refine-
ment use this approach [15].



1 Set<Element> wl ; / / w o r k l i s t o f e l e m e n t s
2 wl = /∗ i n i t i a l i z e w o r k l i s t ∗ /
3 whi le ( ! wl . empty ( ) ) {
4 Set<Element> commitPool ;
5 Set<Element> new wl ;
6 f o r ( Element e : wl ) { / / random o r d e r
7 i f ( s p e c P r o c e s s ( e ) ) { / / s p e c u l a t i v e l y e x e c u t e
8 new wl . add ( newWork ( e ) ) ; / / add new work
9 commitPool . add ( e ) ; / / s e t e t o commit

10 } e l s e {
11 new wl . add ( e ) ; / / r e t r y e i n n e x t round
12 a b o r t ( e ) ; / / r o l l back e
13 }
14 }
15 f o r ( Element e : commitPool ) {
16 commit ( e ) ; / / commit e x e c u t i o n
17 }
18 wl = new wl ; / / move t o n e x t round
19 }

Figure 8. ParaMeter pseudocode for unordered loops.

speculative execution using commutativity conditions (see Section
4.4 for further discussion of ParaMeter’s speculative execution). If
speculative execution succeeds, any new work generated by execut-
ing e is added to a new worklist (line 8). However, the speculative
execution of e is not immediately committed. Rather, it is deferred
until later (line 9). If, on the other hand, speculative execution does
not succeed, then ParaMeter takes this as an indication that e con-
flicts with some previously processed worklist element (as specu-
lative execution of earlier elements has not yet committed). Thus,
e is assumed not to have executed in this computation step and is
rolled back using the machinery of the Galois system (line 12). Its
execution is deferred until the next step (line 11). Once the work-
list is fully processed, all speculative execution is committed (lines
15–17), and the next computation step begins, using the elements
on the new worklist (line 18).

The algorithm adopted by ParaMeter ultimately executes a max-
imally independent set of elements at each computation step, de-
spite never explicitly computing a computation graph. To see why
this is the case, consider the standard sequential algorithm for find-
ing a maximal independent set in a graph:

1. Choose a node at random from the graph.
2. Remove the node and all its neighbors from the graph.
3. Repeat steps 1 and 2 until the graph is empty.

The nodes chosen in step 1 represent a maximal independent set.
Note the following regarding conflicts during speculative execu-
tion: (i) if the speculative execution of two elements conflict, then
the elements would have been neighbors in the computation graph;
(ii) if the speculative execution of two elements do not conflict,
then the elements would not neighbor each other in the conflict
graph. Thus, by choosing elements at random from the worklist,
executing them speculatively, and discarding those elements that
conflict with previously executed elements, ParaMeter is emulating
the algorithm for choosing a maximal independent set from a graph
without explicitly building the computation graph.

Given this execution strategy, obtaining the parallelism profile
is straightforward: the total number of elements committed at each
computation step represent the amount of available parallelism in
the profiled algorithm.

4.2 Ordered loops
In one sense, handling ordered loops is easier than profiling un-
ordered loops; there are no scheduling effects to worry about. How-
ever, profiling ordered loops is more difficult than simply replacing
the random iteration in Figure 8 with an iterator that respects the
loop ordering—the parallel execution model for ordered loops re-

1 Set<Element> wl ; / / o r d e r e d w o r k l i s t o f e l e m e n t s
2 wl = /∗ i n i t i a l i z e w o r k l i s t ∗ /
3 Map<Element , i n t e g e r > e x e c u t i o n H i s t o r y ;
4 i n t round = 0 ;
5 whi le ( ! wl . empty ( ) ) {
6 f o r ( Element e : wl ) { / / i n p r i o r i t y o r d e r
7 i f ( s p e c P r o c e s s ( e ) ) / / s p e c u l a t i v e l y e x e c u t e
8 e x e c u t i o n H i s t o r y . p u t I f A b s e n t ( e , round ) ;
9 e l s e

10 e x e c u t i o n H i s t o r y . remove ( e ) ;
11 }
12 f o r ( Element e : wl ) {
13 a b o r t ( e ) ;
14 }
15 Set<Element> new wl ;
16 f o r ( Element e : wl ) { / / i n p r i o r i t y o r d e r
17 i f ( /∗ e . p r i o r i t y > e l e m e n t s i n new wl ∗ / ) {
18 e x e c u t e ( e ) ; / / e x e c u t e non−s p e c u l a t i v e l y
19 new wl . add ( newWork ( e ) ) ; / / add new work
20 } e l s e {
21 new wl . add ( e ) ; / / e l e m e n t w i l l be p r o c e s s e d l a t e r
22 }
23 }
24 wl = new wl ; / / move t o n e x t round
25 round ++;
26 }

Figure 9. ParaMeter pseudocode for ordered loops.

quires that iterations appear to complete in order. Even if an ele-
ment appears to be independent of all others in a given round, it
cannot complete execution until it is the highest-priority element in
the system. This leads to the following situation: an element can be
executed in a particular round, but until it becomes the highest pri-
ority element in the system, it may be interfered with by higher pri-
ority work generated in a later round. Consider an ordered worklist
that contains two elements, a and b, in that order. Further, suppose
that a and b are independent, but executing a produces a new ele-
ment c, which should execute before b and conflicts with b. Even
though a and b appear to be independent, b will ultimately have
to wait until c executes before it can execute. However, if b and c
do not interfere, then b can safely execute in parallel with a (even
though its execution will not “commit” until later).

The key difficulty in profiling an ordered loop is accounting for
when an element executes. An element is not counted as executed
when it first appears to be independent—as the previous example
shows, the element’s execution may conflict with work generated
in later steps. Nor should an element be counted as executed when
it eventually commits, as the element may have actually executed
earlier and the cost of committing is minimal. Instead, ParaMeter
counts an element as executed in the earliest round where it (i)
is independent, and (ii) remains independent of newly generated
work until it can eventually commit. The algorithm ParaMeter uses
to determine when to count an element’s execution is presented in
Figure 9.

ParaMeter maintains a mapping from every element to the round
it executed in, called executionHistory. At each computa-
tion step, ParaMeter speculatively executes every element in the
worklist in order. If an element successfully executes, its exe-
cution time is recorded in executionHistory if it does not
already appear in the map (line 8). Otherwise, the mapping in
executionHistory is cleared (line 10). Next, all speculative
execution is rolled back (line 13). Finally, ParaMeter “commits”
the highest priority elements in the system by re-executing them
(lines 16–23). Any newly created work will be executed in the next
round (line 19). Note that ParaMeter does not add newly created
work to the worklist until the element that generates it commits,
regardless of when the element first became independent. Because
lower priority work may conflict with this newly created work, it



cannot be executed in the current round and is deferred (line 21).
This completes a single round of execution.

After all elements have been processed, ParaMeter assembles
the parallelism profile by scanning executionHistory to see
how many elements were counted for each round.

4.3 Metrics
There are several parallelism metrics that ParaMeter can measure.
Other than the parallelism profile, it also measures constrained
parallelism and the parallelism intensity.

Parallelism profile The parallelism profile can be approximated
by determining how many elements were executed in each round of
execution. Since this data is maintained by ParaMeter, parallelism
profiles can be generated simply by iterating through the rounds of
execution and recording how many elements are executed in each
round, as described in Section 4.

Parallelism intensity ParaMeter computes the parallelism inten-
sity by dividing the amount of work executed in each round by the
total amount of work available for execution at that time, i.e., the
size of the worklist. As we discussed in Section 3.3, parallelism
intensity provides some insight as to the effectiveness of random
scheduling. Recall that the available parallelism is generated by ex-
ecuting a maximally independent set of elements in each round.
However, in a parallel implementation of an irregular program, it
may be infeasible to calculate an independent set of elements to
execute. Instead, elements will be chosen based on some heuris-
tic. Parallelism intensity correlates with the likelihood that random
scheduling will actually choose independent iterations.

Constrained parallelism Constrained parallelism estimates the
critical path length of a program if it were to be run on a limited
number of processors. This allows programmers to determine the
incremental benefit of devoting additional processors to a problem.
ParaMeter simulates the constrained parallelism by changing its be-
havior while executing elements: if the number of elements that can
be executed in a round exceeds the number of simulated processors,
all remaining elements are deferred to the next round.

Because it can be expensive to measure constrained parallelism,
ParaMeter can also provide estimates of the constrained parallelism
from the “unconstrained” parallelism profile. This estimate is based
on the following simplifying assumption: if the execution of an el-
ement is deferred only because of processor constraints, it is as-
sumed that it can still execute safely in subsequent rounds. This
assumption drives ParaMeter’s estimate of constrained parallelism.
Consider estimating the critical path length of a program when run
on N processors. In each round, some number of elements are
available to be executed in parallel. However, in a constrained set-
ting, no more than N can actually execute in a given round; all
other elements are considered “excess” elements, and their execu-
tion must be deferred to a later round. ParaMeter examines each
round of execution and determines the total number of excess el-
ements, p. ParaMeter then assumes these p elements can all be
executed in parallel, taking e = dp/Ne rounds. The critical path
length of the program when executed on N processors is therefore
estimated to be the number of rounds in the parallelism profile plus
e.

4.4 Discussion
Speculation Because ParaMeter’s speculative execution is built
on top of the Galois system, the system precisely captures which
elements may be executed in parallel. ParaMeter uses commutativ-
ity checks to provide an algorithmic notion of conflict, based on the
semantics of shared data structures, rather than the particular im-
plementation of data structures. In fact, because ParaMeter is not

tuned for parallel execution, it uses more precise checks than the
commutativity checks of the Galois system, which are simplified
for efficiency reasons.

Actual speculative systems using techniques such as thread level
speculation [17, 23], Transactional Memory [11, 14], or partition
locking [19] may generate false conflicts and hide parallelism that
may be available. Thus, ParaMeter should be viewed as characteriz-
ing the parallelism in the algorithm rather than in a particular paral-
lel implementation. However, the speculative execution framework
used in ParaMeter can be replaced with other systems, allowing
ParaMeter to simulate the execution of parallel algorithms when
using, e.g., transactional memory.

Scheduling ParaMeter’s greedy scheduling approach to profiling
unordered loops is equivalent to simulating the execution of an
algorithm on an infinite number of processors, with conflicts be-
tween concurrently executed tasks settled randomly. Note that this
approach does not mean that ParaMeter necessarily finds the maxi-
mum amount of parallelism available in an algorithm; the schedul-
ing heuristic finds a maximal set of independent iterations, not a
maximum set. It is thus best to consider the amount of parallelism
ParaMeter finds in an algorithm as an informative bound that ap-
proaches but does not necessarily reach the upper bound.

ParaMeter may produce a range of possible parallelism profiles
when using different seeds in the random scheduler. For many algo-
rithms, such as Delaunay mesh refinement, the variance in the par-
allelism profiles with different seeds is relatively small, as we see
in Section 5.1. However, in some algorithms, different scheduling
choices can lead to vastly different amounts of parallelism. An ex-
ample of such an algorithm is agglomerative clustering, presented
in Section 5.6.

Interestingly, there are algorithms for which ParaMeter’s ran-
dom scheduling is required for completion. For example, some al-
gorithms iterate over a set of active elements until some conver-
gence criterion is reached. In these algorithms, active elements that
do not help progress towards convergence are put back on the work-
list, so their execution is effectively a no-op. If ParaMeter selected
independent sets deterministically and every element in the inde-
pendent set was a no-op, the algorithm would remain in the same
state after processing those elements. ParaMeter would choose ex-
actly the same set of elements in subsequent rounds and the algo-
rithm would never terminate. By introducing some randomness to
its choice of independent sets, ParaMeter avoids this issue when
profiling algorithms such as survey propagation (Section 5.5) and
agglomerative clustering (Section 5.6).

5. Experimental Results
We evaluated ParaMeter on seven irregular applications exhibit-
ing amorphous data-parallelism. Six of these applications use un-
ordered set iterators: Delaunay mesh refinement, Delaunay trian-
gulation, augmenting-paths maxflow, preflow-push maxflow, sur-
vey propagation and agglomerative clustering. We also evaluate a
variant of agglomerative clustering that uses an ordered set itera-
tor. For each application, we present the parallelism profile gen-
erated by ParaMeter and explain how the results correlate with the
algorithm’s characteristics. For three applications, Delaunay refine-
ment, Delaunay triangulation and augmenting paths maxflow, we
compare ParaMeter’s estimate of constrained parallelism to an es-
timate computed using the parallelism profile, cf. Section 4.3.

5.1 Delaunay mesh refinement
Delaunay mesh refinement (DMR) is the running example in this
paper, and pseudocode for this algorithm was shown in Figure 3.
The worklist is unordered and contains bad triangles from the mesh.
As explained earlier, conflicts arise when the cavities of bad tri-
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(c) Parallelism profiles from multiple ParaMeter runs

Figure 10. Parallelism metrics for Delaunay mesh refinement.

angles overlap. For the experiments reported here, we used a ran-
domly generated input mesh consisting of about 100,000 triangles,
of which 47,000 are initially bad.

The parallelism profile for DMR is shown in Figure 10(a). Ini-
tially, there are roughly 5,000 bad triangles that can be processed
in parallel. The amount of parallelism increases as the computation
progresses, peaking at over 7,000 triangles at which point the avail-
able parallelism drops slowly. The parallelism intensity increases
steadily as the computation progresses, as shown in Figure 10(b).

To explain the parallelism behavior of DMR, it is illustrative
to consider how the application behaves in the abstract. The mesh
can be viewed as a graph, with each triangle representing a node in
the graph, and edges in the graph representing triangle adjacency.
In this representation, processing a bad triangle is equivalent to
removing some small connected subgraph from the overall mesh
(the cavity) and replacing it with a new subgraph containing more
nodes (the re-triangulated cavity). Therefore, as the application
progresses, the graph becomes larger. However, the average size
of a cavity remains the same, regardless of the overall size of the
mesh. Hence, as the graph becomes refined, the likelihood that
two cavities overlap decreases. Therefore, the available parallelism
increases initially and then drops when the computation starts to
run out of work, while the probability of conflicts decreases as the
computation progresses.

Figure 10(c) shows the result of profiling DMR with Para-
Meter five times with different seeds, overlaid on a single plot.
The amount of parallelism found in each step is roughly the same;
the peak parallelism varies between 7,216 and 7,306 independent
iterations, and the critical path varies between 54 and 59 steps.
The behavior of many applications is similarly independent of the
scheduling choices. Other applications are more sensitive to the
scheduling, as we will see in Section 5.6.

1: Mesh m = /* initialize with one triangle */
2: Set points = /* randomly generate points */
3: Worklist wl;
4: wl.add(points);
5: for each Point p in wl {
6: Triangle t = m.surrounding(p);
7: Triangle newSplit[3] = m.splitTriangle(t, p);
8: Worklist wl2;
9: wl2.add(edges(newSplit));
10: for each Edge e in wl2 {
11: if (!isDelaunay(e)) {
12: Triangle newFlipped[2] = m.flipEdge(e);
13: wl2.add(edges(newFlipped));
14: }
15: }
16: }

Figure 11. Pseudocode for Delaunay triangulation.
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Figure 12. Parallelism metrics for Delaunay triangulation.

5.2 Delaunay triangulation
Delaunay triangulation (DT) is used to generate Delaunay meshes
such as those used as input to DMR. We utilize an unordered,
amorphous data-parallel algorithm by Guibas et al. [10]. Figure
11 shows the pseudocode. The input to DT is (i) a set of points
in a plane and (ii) a large triangle in that plane that encompasses
all those points. The output is the Delaunay triangulation of those
points. The worklist consists of the input points. The mesh is built
up incrementally. When a new point is inserted into the mesh,
the triangle containing that point is split into three triangles, and
the region around those triangles is re-triangulated to restore the
Delaunay property. Thus, two points conflict with one another if
their insertion would modify the same parts of the mesh.

At the beginning of execution, there is very little parallelism be-
cause all points attempt to split the same triangle and conflict with
one another. This can be seen in the parallelism profile generated
by ParaMeter for an input of 10,000 random points, shown in Fig-
ure 12(a). Initially, there is no parallelism (only one element can
be executed per round), but as execution progresses, the amount of
parallelism increases, and then decreases as the worklist is drained.

We notice that, in the abstract, DT, much like DMR, is a graph
refinement code. It is thus not surprising that the parallelism profile
of DT has the same characteristic bell shape as that of DMR. The
parallelism intensity demonstrates the increase in parallelism that
we expect of refinement codes, whereas the parallelism profile
reflects a lack of work in later rounds.



1: worklist.add(SOURCE);
2: worklist.add(SINK);
3: for each Node n in worklist {

//n in SourceTree or SinkTree
4: if (n.inSourceTree()) {
5: for each Node a in n.neighbors() {
6: if (a.inSourceTree())
7: continue; //already found
8: else if (a.inSinkTree()) {

//decrement capacity along path
9: int cap = augment(n, a);
10: flow.inc(cap); //update total flow

//put disconnected nodes onto worklist
11: processOrphans();
12: } else {
13: worklist.add(a);
14: a.setParent(n); //put a into SourceTree
15: }
16: }
17: } else { //n must be in the SinkTree
18: ... //similar to code for n in SourceTree
19: }
20:}

Figure 13. Pseudocode for augmenting paths algorithm.
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Figure 14. Parallelism metrics for augmenting paths maxflow.

5.3 Augmenting paths maxflow
The Boykov-Kolmogorov algorithm for image segmentation [3]
(AP) uses the idea of graph-cuts. This algorithm builds a graph
in which there is a node for each pixel in the image and directed
edges between two nodes if the corresponding pixels are adjacent
in the image. There is also a source node and a sink node, each
of which is connected to all the pixel nodes. In our experiments,
the image is 512x512 pixels, so the bulk of the graph is a grid of
that size. The algorithm assigns certain weights to nodes and edges.
The main computation is a max-flow computation using the well-
known principle of augmenting paths; pseudocode is provided in
Figure 13. Search trees are built from both the source and the sink.
When these trees connect, an augmenting path is found and the flow
is augmented. Saturated edges are then dropped from the trees, and
tree-building is resumed incrementally in the new graph.

The worklist consists of nodes on the frontiers of the search
trees; initially, it contains only the source and sink nodes. Process-
ing a node from the worklist involves a search operation and poten-
tially an augment step. The search operation examines the neigh-
bors of the node in the residual graph and attempts to grow the tree
by finding a node that is not yet part of either the source tree or
the sink tree. An augment operation traverses an augmenting path

1: Worklist wl = /* Nodes with excess flow */
2: for each Node u in wl {
3: for each Edge e of Node u {

/* push flow from u along edge e
update capacity of e and excess in u
flow == amount of flow pushed */

4: double flow = Push(u, e);
5: if (flow > 0)
6: worklist.add(e.head);
7: }
8: Relabel(u); // raise u’s height if necessary
9: if (u.excess > 0)

worklist.add(u);
10: }

Figure 15. Pseudocode for preflow-push.

and updates values on nodes and edges along this path. Notice that
search and augment operations do not modify the structure of the
graph. Conflicts arise between two iterations if they perform over-
lapping searches or augments.

Since there are a lot of short paths from the source to the
sink, we would expect conflicts to be rare. This is borne out in
Figure 14(b), which shows that the parallelism intensity is usually
above 50%. Given the high parallelism intensity, the general shape
of the parallelism profile, seen in Figure 14(a), is largely governed
by the amount of work in the worklist. From the structure of the
graph, it is clear that the size of the worklist becomes large very
quickly (representing roughly half of the total amount of work done
by the program). After that, the amount of work and the parallelism
decrease steadily, as shown in Figure 14(a). It is likely that the
behavior of AP will be very different for graphs from a different
domain.

5.4 Preflow-push maxflow
Preflow-push (PP) is another algorithm for computing the maxi-
mum flow in a graph [9]. Pseudocode for preflow push is shown
in Figure 15. Nodes maintain a height, which represents a lower
bound on the node’s distance to the sink. Nodes also maintain ex-
cess flow, which is the sum of all the flow entering that node. The
worklist contains the nodes in the graph. The algorithm consists of
pushing flow from a random node to a neighboring node of a lower
height, and of raising the height of nodes so that they are higher
than neighboring nodes. Both the push and relabel operations tra-
verse a node and its neighbors, potentially updating their values.

We use PP to solve the same types of image segmentation
problems that AP is used for and hence utilize the same input
graphs. Because operations in PP touch only few nodes, we expect
it to behave similarly to AP. Figure 16(b) shows that the program is
able to maintain an intensity over 50% throughout execution, just
as AP does. Thus, the parallelism profile, in Figure 16(a), chiefly
reflects the amount of work available to be processed. We see that
there is significant work to do until there are only a few nodes with
excess flow left in the graph.

5.5 Survey propagation
Survey propagation (SP) for SAT is a heuristic solver based on
Bayesian inference [4]. Pseudocode is given in Figure 17. The
underlying graph in SP is the factor graph for the Boolean formula,
a bipartite graph in which one set of nodes represents the variables
in the formula, and the other set of nodes represents the clauses. An
edge links a variable to a clause if the variable or its negation is a
literal in that clause. The worklist for SP consists of all nodes (both
variables and clauses) in the graph. To process a node, the algorithm
updates the value of the node based on the values of its neighbors.
After a number of updates, the value for a variable may become
“frozen” (i.e., set to true or false). At that point, the variable is
removed from the graph. The termination condition for SP is fairly
complex – when the number of variables is small enough, or SP has
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Figure 16. Parallelism metrics for preflow-push maxflow.

1: FactorGraph f = /* read initial formula */
2: wl.put(f.clausesAndVariables());
3: foreach Node n in wl {
4: if (/*time out or number of variables is small*/) {
5: break;
6: }
7: if (n.isVariable()) {
8: n.updateVariable();
9: if (/* n is frozen */) {
10: /* remove n from graph */
11: continue;
12: } else {
13: n.updateClause();
14: }
15: wl.add(n);
16: }

Figure 17. Pseudocode of survey propagation.

not made progress after some number of iterations, the SP iterations
are terminated and the remaining problem is solved using a local
heuristic like WalkSAT.

Abstractly, each operation in SP is a traversal and update of
the nodes in a small neighborhood of the graph, with elements
conflicting if the neighborhoods overlap. However, unlike in the
maxflow problems, every node in the graph is in the worklist for
SP. As a result, we would expect a higher amount of available
parallelism (relative to the size of the input graph), but a lower
parallelism intensity. Profiling SP using ParaMeter with a 3-CNF
formula (a conjunction of 3-variable disjunctions) consisting of
1000 variables and 4200 clauses produces the results seen in Figure
18, which bear out this intuition.

As we might expect from the above discussion, as variables are
frozen and removed from the graph, the connectivity of the graph
drops, and the worklist gets smaller. Thus, the amount of available
parallelism drops (as there is less overall work to do), but the
parallelism intensity increases (as the graph connectivity is lower,
decreasing the chance of conflicts). It is important to note that,
unlike the other applications we have examined, the termination
condition for SP is not when the worklist empties. Thus, at the
end of the execution, there are still several hundred elements in
the worklist, and the parallelism intensity is still fairly low.

5.6 Agglomerative clustering (unordered)
The sixth application that we profiled is agglomerative clustering
(AC). The goal of agglomerative clustering is to build a binary tree,
called a dendrogram, representing a clustering of a set of points in
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Figure 18. Parallelism metrics for survey propagation.

1: worklist = new Set(input_points);
2: for each Element a in worklist do {
3: b = nearest(a); //closest point to a
4: if (b == null) break; //stop if a is last element
5: c = nearest(b); //closest point to b
6: if (a == c) {

//create new cluster e that contains a and b
7: Element e = cluster(a,b);
8: worklist.add(e);
9: } else { //can’t cluster a yet, try again later
10: worklist.add(a); //add back to worklist
11: }
12: }

Figure 19. Pseudocode for unordered agglomerative clustering.

space. The algorithm proposed by Walter et al. uses an unordered
set iterator [28]. Pseudocode is shown in Figure 19. The algorithm
proceeds as follows. The worklist is initialized with all the points.
Each point determines its nearest neighbor in the space. If two
points agree that they are closest to each other, they are clustered,
and a new point representing the cluster is inserted into the space.
This is fundamentally an amorphous data-parallel algorithm, with
worklist elements conflicting when the results of nearest neighbor
computations are changed (due to insertions or deletions of points
from the space).

Abstractly, we can think of AC as a bottom-up tree-building
algorithm. If there were no conflicts between elements other than
the dependences inherent in building a tree, we see that the structure
of the tree limits the amount of parallelism available in the program:
a bushy tree will have a lot of parallelism (as the lower levels of the
tree have a lot of parallelism) while a skinny tree will have little
parallelism (as each level is dependent on the level below).

We profiled AC with an input of 20,000 randomly generated
points, and the results are shown in Figure 20. There appears to be a
significant amount of parallelism in Figure 20(a). However, we note
that significantly more work is performed than should be necessary
to build the dendrogram. This is because processing a point in
the worklist only to find that it cannot be clustered yet counts
as a piece of work; there is a significant amount of work in the
worklist that is “non-progressive,” not contributing to the eventual
solution. If we record only the worklist elements that contribute
to the dendrogram, we obtain the black line in Figure 20(a) and
significantly less useful available parallelism. Nonetheless, from
the structure of the parallelism profile, we still see the expected
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Figure 20. Parallelism metrics for unordered agglomerative clus-
tering.

behavior with a lot of parallelism at the beginning (when the lower
levels of the tree are being constructed) and far less at the end.

Note, however, that executing non-progressive work may pre-
vent other, useful work from being executed in a given round (due
to conflicts between worklist elements). We modified ParaMeter to
use oracle scheduling rather than random scheduling. Thus, when
choosing elements to execute in a given round, ParaMeter only con-
siders elements that contribute to the solution. This approach gen-
erated the profile shown in Figure 20(b). We see that the oracle
scheduler exhibits much higher parallelism than random schedul-
ing. We also note that the critical path length when using the oracle
scheduler is an order of magnitude shorter than when using the ran-
dom scheduler. This is a prime example of algorithms where par-
ticular scheduling choices lead to dramatically different amounts of
parallelism. Interestingly, with oracle scheduling, we find that AC
is able to achieve the maximum possible parallelism available in a
bottom-up tree building code.

5.7 Agglomerative clustering (ordered)
There is an alternative, greedy algorithm for agglomerative clus-
tering (GAC) that uses an ordered set iterator [25]. Pseudocode is
shown in Figure 21. The worklist is initialized as follows: for each
point p, find the closest point n, and insert the potential cluster
(p, n) into the worklist. The worklist is ordered by the size of the
potential clusters (i.e., the potential cluster whose points are closest
together is at the top of the list). The algorithm proceeds by greedily
clustering the top potential cluster in the worklist. After clustering
the two points, a new potential cluster is inserted containing the
newly created cluster and the point nearest to it. Interestingly, this
greedy algorithm produces the same dendrogram as the unordered
algorithm presented in the previous section.

When we profile GAC with ParaMeter on the same input as for
AC, we obtain the parallelism profile shown in Figure 22. Note
that the first point in the profile is cut off and has a value of 5298.
While there is a significant amount of parallelism in the first round,
there is very little parallelism thereafter. This is due to the nature
of the ordered execution strategy. In the first round, many of the
potential clusters representing the lowest level of the dendrogram
can be executed in parallel. However, recall that for ordered loops
ParaMeter does not let a worklist element commit until it is the
highest priority element in the system—even if its execution is
accounted for in an earlier round—and new work is not added to

1: pq = new PriorityQueue();
2: foreach p in input_points {pq.add(<p, nearest(p)>)}
3: foreach Pair <p,n> in pq {
4: if (p.isAlreadyClustered()) continue;
5: if (n.isAlreadyClustered()) {
6: pq.add(<p, nearest(p)>);
7: continue;
8: }
9: Cluster c = new Cluster(p,n);
10: dendrogram.add(c);
11: Point m = nearest(c);
12: if (m != ptAtInfinity) pq.add(<c,m>);
13: }

Figure 21. Pseudocode for ordered agglomerative clustering.
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Figure 22. Parallelism profile for ordered agglomerative clustering

the worklist until the element that generates it commits. It takes
several hundred steps for the elements recorded in the first round
to actually commit, and the new work generated by the execution
of those elements happens much later than the first round. In other
words, work generated by those initial elements becomes available
for execution across hundreds of rounds, rather than immediately.
Thus, the critical path length of the application is inflated, resulting
in lower available parallelism in later rounds.

5.8 Constrained Parallelism
Beyond generating parallelism profiles and calculating parallelism
intensity, ParaMeter can also calculate constrained parallelism, as
described in Section 4.3. The goal of constrained parallelism is
to estimate how the critical path of the execution changes if the
number of processors available for execution is limited. Because
it can be very expensive to calculate constrained parallelism for a
large number of constraints, we can also use the parallelism profile
(i.e., the “unconstrained” parallelism) to estimate the length of the
critical path when there are resource constraints.

We used ParaMeter to calculate the constrained parallelism for
three of the applications we profiled: Delaunay mesh refinement,
Delaunay triangulation, and augmenting paths maxflow. For each
application, we found the critical path length for a range of proces-
sor counts. We also use the parallelism profiles to estimate the crit-
ical path length using the technique described in Section 4.3. The
results are presented in Figure 23. In all three cases, our estimates
of the critical path length closely track the critical path length mea-
sured by ParaMeter. These results demonstrate that it is feasible to
use simple, easy-to-calculate models, as well as a single piece of
profiling data (the parallelism profile) to estimate the parallelism in
irregular programs for arbitrary numbers of processors.

Constrained parallelism can inform the choice of platforms on
which to run an application. We see that the constrained parallelism
curves all follow the same general shape: a quick increase in per-
formance when the number of processors is relatively low, and de-
creasing marginal benefits as the number of processors increases.
The existence of a “knee” in the constrained parallelism curve is
indicative of diminishing returns: beyond a certain point, there is
little reason to increase the number of processors devoted to a task.
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Figure 23. Constrained parallelism: measured vs. estimated.

Application Unprofiled time Profiled time
DMR 18.0s 57.4s
DT 4.2s 38.7s
AP 0.36s 19.4s
PP 24.5s 8m51.8s
SP 3m54s 25m30.2s
AC 2.36s 10m44.2s
AC(O) N/A 3m0.1s
GAC 1.48s 1m44.2s

Table 1. Running times of unprofiled and profiled applications.

5.9 ParaMeter Performance
Table 1 shows the running time of each application when profiled
with ParaMeter, as well as the running time of the non-profiled code
(note that there is no sequential oracle scheduler). Our test platform
is a dual-core AMD Opteron system with each core running at 1.8
GHz. ParaMeter and the test applications were written in Java and
run using the Sun HotSpot JVM, version 1.6.

ParaMeter is designed as an off-line profiling tool, and hence
performance is not the primary goal of its implementation. Never-
theless, we see that the tool has reasonable performance for most
applications. The overhead is largely governed by two factors. The
first is the cost of instrumentation. Thus, applications that require
more instrumentation, such as augmenting paths and preflow push,
suffer from higher overheads. Second, applications that have low
parallelism intensity have higher overhead, as ParaMeter must con-
tinually inspect work that will ultimately not be executed. Unsur-
prisingly, AC has a very high overhead as the non-progressive work
must be repeatedly executed by ParaMeter to no effect. Note that
there is no equivalent sequential version of AC(O), as it requires an
oracle scheduler.

6. Related Work
Much of the related work on profiling parallel execution is dis-
cussed in Section 3. Here, we highlight more recent work in the
same area.

Profiling for thread-level speculation In recent years, researchers
have added profilers to compilers that target thread-level specula-
tion systems [21, 29]. These profilers simulate the execution of a
program on the target TLS system to determine how much paral-
lelism can be exploited. While these approaches produce profile
information akin to ParaMeter’s parallelism profiles, there are two
key differences.

The first difference recalls the distinction, discussed in Sec-
tion 4.4, between profiling a particular parallelized program ver-
sus characterizing an algorithm. The TLS profiling tools are not
used to measure parallelism in an algorithm; rather, they are used to
measure the effectiveness of TLS approaches on certain regions of
code. In contrast, ParaMeter’s goal is to provide information about
an algorithm, independent of the particular system used to paral-
lelize that algorithm.

This difference of goals leads directly to the second distinction
between ParaMeter and TLS-based profilers: because ParaMeter is
independent of a parallelization system, it provides a more accu-
rate view of the amount of parallelism in an algorithm. This is due
to two effects. First, because TLS systems must adhere to the se-
quential ordering of the program; they are unable to find additional
parallelism by executing worklist elements in other orders. Second,
existing TLS profilers use memory-based conflict detection, which,
as we discuss in Section 4.4, may obscure available parallelism.

Profiling in functional languages For functional programs, Har-
ris and Singh showed how profiling can be used to estimate avail-
able parallelism [12]. ParaMeter instead targets imperative pro-
grams that exhibit amorphous data-parallelism. This requires ad-
ditional support for handling schedule dependence and conflicts in
shared data structures.

Dependence density Von Praun et al. recently studied “depen-
dence density” in programs using optimistic concurrency [27].
While dependence density is a single number for a parallel sec-
tion, it is essentially the inverse of the parallelism intensity. Thus,
programs with a low dependence density can be easily executed
by random schedulers, whereas those with higher dependence den-
sities require more intelligent scheduling to exploit parallelism.
However, von Praun et al. collect their data from an instrumented,
sequential run of computation rather than staging computation as
ParaMeter does. This leads to an inefficient handling of newly gen-
erated work: work generated at a later stage may conflict with work
that could have been safely executed earlier. Further, their notion of
dependence is tied to memory conflicts, which are more restrictive
than ParaMeter’s algorithmic conflicts, potentially resulting in an
underreporting of the amount of parallelism.

7. Conclusions
This paper presents a tool called ParaMeter to determine how much
parallelism is latent in irregular programs that exhibit amorphous
data-parallelism. ParaMeter addresses some of the unique chal-
lenges presented by such programs: dynamically generated work
and schedule dependent execution. While ParaMeter measures par-
allelism in amorphous data-parallel programs, its techniques can be
extended to other models of parallelism in irregular programs. For
example, thread-level speculation, which speculatively executes it-
erations of for-loops, can be profiled in ParaMeter by viewing loops
as ordered worklists (with the order fixed by the for-loop).

The profiles generated by ParaMeter can be used to guide the
development of parallel programs. Parallelism profiles produce a



“target” for parallelization: if an application’s parallelism profile
indicates little or no parallelism, there may not be a need for paral-
lelization. Similarly, it may not be necessary to continue optimizing
a parallel implementation that approaches the speedups predicted
by the parallelism profile. Parallelism profiles can further be used to
compare different implementations of the same algorithm. For ex-
ample, we found that unordered agglomerative clustering exhibits
more parallelism than the ordered counterpart.

Profiling parallelism intensity provides insight into the efficacy
of random scheduling. High parallelism intensity makes it likely
that randomly chosen elements can be executed in parallel, while
low intensity makes scheduling difficult, even if there is high avail-
able parallelism. Finally, measuring constrained parallelism pro-
vides an estimate of how performance will be affected by changing
the number of processors available to the program, which can be
useful in choosing the right platforms for an application.
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