Strings and Languages

- An alphabet is a finite set of symbols.
 - \{a, b, c, \ldots, x, y, z\}
 - \{\alpha, \beta, \gamma, \ldots, \chi, \psi, \omega\}
 - Ascii, Unicode, \{0, 1\}
• A string is a finite sequence of symbols from an alphabet written in juxtaposition.
 – thecatinthehat
 – ablewasiereisawelba
 – κωυσ
 – helloworld!
 – 01001000100001

• The string containing no symbols is the empty string, denoted by ϵ.

• The set of all strings over alphabet Σ is denoted by Σ^*.
String Operations

• The length of a string is its length as a sequence.
 – length of *abracadabra* is 11
 – denoted by absolute values:
 \(|abracadabra| = 11\)
 – \(|\epsilon| = 0\).

• Substring
 – A string *v* is a substring of string *w* if there are strings *x* and *y* so that
 \(w = xvy\).
 – If \(w = xy\), then
 * *y* is a suffix of *w* and
 * *x* is a prefix of *w*.
• Concatenation:
 – Let $x = x_1x_2 \ldots x_n$
 – Let $y = y_1y_2 \ldots y_m$,
 – Then $xy = x_1x_2 \ldots x_ny_1y_2 \ldots y_m$.
 – if $x = "foot"$ and $y = "ball"$ then $xy = "football"

• Properties of Concatenation

 $|xy| = |x| + |y|$ \hspace{1cm} \text{length}

 $\epsilon x = x\epsilon = x$ \hspace{1cm} \text{identity}

 $(xy)z = x(yz)$ \hspace{1cm} \text{associativity}
• Exponentiation
 – If \(w \) is a string and \(n \geq 0 \),
 – then
 \[
 w^0 = \epsilon \quad \text{if } i = 0 \\
 w^i = w^{i-1}w \quad \text{if } i > 0
 \]

• Reversal
 – The reversal of string \(w \), denoted by \(w^R \), is defined as
 \[
 w^R = w \quad \text{if } w = \epsilon \\
 = au^R \quad \text{if } w = ua \ a \in \Sigma
 \]
Languages

- Let Σ be an alphabet.
- A language over Σ is a set of strings.
- Examples
 - Σ^*,
 - \emptyset,
 - the palindromes over $\{0, 1\}$,
 - the set of strings over $\{a, b\}$ that start with a.
Operations on Languages

- union, intersection, difference as sets
- complement is with respect to Σ^*.
- concatenation

$$L_1L_2 = \{w_1w_2 \mid w_i \in L_i, i = 1, 2\}$$

- exponentiation

$$L^0 = \{\epsilon\}$$

$$L^{i+1} = L^iL \text{ for } i > 0$$
• closure
 If L is a language, then L^* is the set of all strings formed by concatenating zero or more strings from L.
 $$L^* = \bigcup_{i=0}^{\infty} L^i$$

• positive closure
 If L is a language, then L^+ is the set of all strings formed by concatenating one or more strings from L.
 $$L^+ = \bigcup_{i=1}^{\infty} L^i$$