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ABSTRACT 

When collecting person records for census, identifying individuals accurately is 

paramount. Over time, people change their phone numbers, their addresses, even their 

names. Without a universal identifier such as a social security number or a finger-print, it 

is difficult to know whether two distinct person records represent the same individual. 

The Cost Sensitive Alternating Decision Tree (CSADT) algorithm (a supervised learning 

algorithm) is employed as a Record Linkage solution to the problem of resolving whether 

two person records are the same individual. A person record consists of several attributes 

such as a name, a phone number, an address, etc. The number of person-record-pairs 

grows exponentially as the number of records increase. In order to accommodate this 

exponential growth, a scalable implementation of the CSADT algorithm was employed. 

A thorough investigation and evaluation are presented demonstrating the effectiveness of 

this implementation of the CSADT algorithm on linking person records. 
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1. INTRODUCTION 

A first, middle (initial perhaps), and last name typically formulate a unique 

identifier for an individual. In the digital age, a repository of personal information is 

available on the Internet. People-finder sites, such as WhitePages.com and Intelius.com, 

provide easy access to these personal demographics based on simple criteria such as 

surname and zip code. A simple search at one of these sites results in several person 

records with similar if not identical names demonstrating just how far a person’s name is 

from unique. Common names, such as Joe Smith, require auxiliary information (address, 

phone number, date of birth, etc.) in order to ascertain an individual’s identity. Such data 

are not often available while some attributes, such as address and phone number, are 

subject to change even when they are available. The moving population produces 

multiple records with identical attributes except their address. If, by some chance, these 

records were linked together correctly as the same individual, which record would 

contain the current address? The adoption of an English name, a common practice of 

cultural assimilation among international immigrants in western countries, often results in 

records with the first and middle names (or initial) interchanged. Name changes among 

women according to the marital status is a longstanding challenge in surname analysis. 

People take on a personal name suffix, such as Sr. or Jr., adding to the difficulty. Some 

take on a professional suffix, such as Ph.D. or M.D., later in life again increasing the 

difficulty in identifying the individual correctly. 

Clearly, the task of resolving person records is a task that the most sophisticated 

parsing script could not complete. Some Machine Learning (ML) techniques were 

specifically designed to accurately solve Record Linkage (RL) problems such as linking 
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people records. RL is the process of matching, resolving, and linking multiple records of 

the same entity from multiple data sources. It is a common technique in database 

processing and consolidation. Unfortunately, data often lack a unique, global identifier. 

The data are neither carefully controlled for quality nor defined in a consistent way across 

different sources (Elmagarmid 2007). RL can serve an important role in upholding data 

integrity, maintaining data quality, and enhancing pattern discovery. 

In the context of people demographics, RL introduces scale challenges. Suppose a 

person record i containing k attributes is one instance in a dataset of size n. The person 

record i’s k attributes would need to be compared against all other (n-1) person records’ k 

attributes in order to ensure minimum duplication. To compare the text attributes of a 

person record, a text comparing algorithm must be employed such as the Levenshtein 

distance (Levenshtein 1999). 

It is essential to carefully implement an appropriate RL algorithm to detect, 

identify, and resolve entities in question to remove and consolidate duplicate records 

across multiple data sources. Several RL techniques were surveyed in the search for an 

algorithm that could link such records. The most successful combinations have been 

boosting decision trees (Freund 1999). Boosting uses all instances at each repetition but 

maintains a weight for each instance in the training set that reflects its importance.  

Adjusting the weights causes the learner to focus on different instances and leads to pure 

classifiers (Quinlan 1996). RL models based on Cost Sensitive Alternating Decision 

Trees (CSADT), an algorithm that uniquely combines boosting and decision tree 

algorithms creates shorter and easier-to-interpret linking rules. Experiments show that the 

proposed models significantly outperformed other baselines on the desired industrial 
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operating points, and the improved understanding of the model’s decisions led to faster 

debugging and feature development cycles (Chen 2011). 

In this thesis, the CSADT algorithm was selected to explore the challenge of 

linking person records. The CSADT algorithm carefully examines as many conditions as 

it’s offered and ultimately selects the best conditions as splitter nodes in the decision tree 

that it creates. The CSADT algorithm uses a cost sensitive, boosting, induction step when 

searching for its next splitter node. Essentially, a CSADT tree is an AND/OR graph. 

Knowledge contained in the tree is distributed as multiple paths must be traversed to form 

predictions. Instances that satisfy multiple splitter nodes have the values of prediction 

nodes that they reach summed to form an overall prediction value (Holmes 2002). A 

positive sum represents one class and a negative sum the other in the two-class setting. 

The result is a single interpretable tree with predictive capabilities that rival a committee 

of boosted C5.0 trees (Freund 1999). While the CSADT algorithm produces telling 

decision trees which have dissected the training data to illuminate the patterns therein, it 

is limited by the quality of the conditions available (typically created by the user). A 

novel approach to solving the generation of telling conditions is explored in this thesis. 

Conditions are generated automatically from a statistical analysis of the instances’ 

attributes on matches and non-matches from the person record dataset to maximize 

classification prediction accuracy. 

As the number of person records used in training the CSADT algorithm increases, 

the number of record-pairs (unique person-to-person pairs) grows exponentially. In 

tuning the CSADT algorithm, it is pertinent that the creation of the CSADT tree be 

created sufficiently quickly (minutes to hours rather than days to weeks). Therefore, the 
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implementation of the CSADT algorithm needs to be able scale linearly in order to 

effectively provide decision trees. 

The CSADT algorithm was originally implemented in Python and later 

implemented in C++. The most computationally expensive task the CSADT algorithm 

performs is the search for the best condition. Fortunately, this task is a parallelizable. 

Consequently, C++ boost threads (an element in the most predominant third party library) 

were ultimately employed to perform this task. This thesis contains a thorough 

investigation of the effects on computation time of the CSADT algorithm using different 

programming languages CPU architecture. 

Finally, the CSADT algorithm was applied to another unique dataset (from a 

different domain), specifically NBA team/player statistics asking questions such as, 

“What is the single most important facet of the game of basketball that a team X should 

pursue to increase their chances of securing spot in the playoffs?” The CSADT algorithm 

performed exceptionally as reported in the Evaluation section. 

Lastly, a detailed comprehensive plan is included on what further improvements 

might be pursued in an effort to decrease CPU cycles while the CSADT algorithm is 

underway and to improve the classification prediction accuracy of the CSADT tree. 

 In summary, the main contribution of the thesis is the demonstration of the 

CSADT algorithm as an efficient, scalable, and accurate machine learning technique for 

linking person records when implemented using threads in C++. Ultimately, the training 

dataset resulting in the most accurate CSADT tree was built from 100 training records 

(4,950 record-pairs), considering 171 conditions, and generated 30 nodes. The pre-

processing of the training data in conjunction with the automatically generated 171 high 
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quality conditions were paramount in achieving 99.95% prediction accuracy (89.40% 

precision and 87.39% recall). 
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2. BACKGROUND 

Computer Science (CS) is the study of the principles and use of computers. It is 

the study of automating algorithmic processes that scale. It is the science that deals with 

the theory and methods of processing information in digital computers, the design of 

computer hardware and software, and the applications of computers. CS spans a range of 

topics from theoretical studies of algorithms and the limits of computation to the practical 

issues of implementing computing systems in hardware and software. 

The Association for Computing Machinery (ACM) and the IEEE Computer 

Society (IEEE-CS) have specified the following four areas of computer sciences as 

crucial: 

1. Theory of computation 

2. Algorithms and data structures 

3. Programming methodology and languages 

4. Computer elements and architecture 

Although the above list has been deemed as “crucial by the ACM and IEEE-CS, there are 

other important subfields of computer science that remain: 

 Software engineering 

 Artificial intelligence 

o Data mining 

o Machine learning  

 Computer networking and telecommunications 

 Database systems 

 Parallel computation 
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 Distributed computation 

 Computer-human interaction 

 Computer graphics 

 Operating systems numerical  

 Symbolic computation 

2.1 Machine Learning 

Machine learning (ML) falls under the artificial intelligence umbrella of computer 

science and is the study of algorithms that can literally learn. The word “learning” is 

typically associated with people and animals, however, some machines are equipped with 

the capacity to learn as well. Learning comes in different forms including the ability to 

acquire new information; modify and reinforce knowledge that already exists; and 

changes behaviors, skills, values, and/or preferences. ML algorithms typically fall into 

one of three subcategories: 

 Supervised Learning 

 Unsurprised Learning (also sometimes called clustering) 

 Reinforced Learning 

The CSADT algorithm is a supervised learning technique that has been 

thoroughly explored, implemented, and analyzed in this thesis. When a classification 

question containing attribute-rich data exists, a supervised learning technique is needed. 

For example, a survey is given to multiple individuals resulting in the following 

attributes: 

 Age 
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 Height 

 Gender 

 Political Affiliation 

 BMI 

 Salary 

Given these attributes, a supervised learning technique can be applied to build a 

decision tree that would aid in the prediction of a classification. In order for the ML 

algorithm to build its tree, it first needs to model the attributes in the dataset and then 

consume the dataset. Trends and patterns are illuminated in the decision tree as the ML 

algorithm is consuming the training data. The decision tree is then used on “testing data” 

in order to make predictions. Obviously, there is an emphasis on the training data being 

diverse and telling as the algorithm will only be able to discover patterns present in the 

training data. 

Many unique supervised learning algorithms and structures have been developed; 

all serve as candidates in solving a classification or regression problem. Below is a list of 

better known techniques: 

 Decision trees 

 Ensembles (Bagging, Boosting, Random forest) 

 k-NN 

 Linear Regression 

 Naïve Bayers 

 Neural Networks 
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 Logistic Regression 

 Perceptron 

 Support Vector Machine (SVM) 

 Relevance Vector Machine (RVM) 

This report examines decision trees in general while specifically focusing on the 

CSADT algorithm. 

Unsupervised learning algorithms are applied to problems that do not have 

training data. There is no way to evaluate the effectiveness of a clustering technique on as 

a solution to a problem. Without the ability to train on training data, unsupervised (or 

clustering) techniques must make the assumption that instances with the same 

classification (or label) have similar attributes. Several clustering algorithms have been 

developed, such as: 

 BIRCH 

 Hierarchical 

 k-means 

 Expectation-Maximization (EM) 

 DBSCAN 

 OPTICS 

 Mean-Shift 

Finally, reinforcement learning is applied to a problem in a defined environment 

with a limited number of choices as actions. The game of chess is an example. The 

environment is known, well defined (meaning it can be modeled), and includes a finite 
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number of moves that can be taken on any given turn. Reinforcement learning attempts to 

maximize at every level in order to achieve the desired result. Unsurprisingly, 

reinforcement learning is studied in depth in fields such as game theory, control theory, 

and information theory. It has also been applied to simulation-based optimization, 

statistics, and genetic algorithms. 

2.2 Record Linkage 

Record Linkage (RL) is the process of extracting records from a dataset and then 

matching them to other records. This challenge has presented itself in several disciplines, 

including but not limited to: 

 Information Retrieval 

 Machine Learning 

 Statistics 

 Natural Language Processing 

 Database Management  

Unsurprisingly, RL has taken on several names as different disciplines prefer 

certain descriptions. Common names are listed below:  

 Record Linkage 

 Entity Resolution 

 Deduplication 

 Reference Reconciliation 

 Co-Reference Resolution 

 Object Consolidation 
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Record Linkage has been applied to many problems spanning several disciplines. 

For example, when assimilating information on a subject, identical information is often 

presented differently (i.e.: 313 West Wallaby Street vs. 313 W. Wallaby St.). When this 

information is consumed by a computer, it is rarely perceived as identical information 

and thus results in the generation of erroneous duplicates. It would be ideal to recognize 

these duplicate records and combine their attributes into one all-encompassing record. 

This problem demands the direct application of an RL algorithm. 

There are more complex problems that RL can be applied to. Suppose a potential 

new customer is investigating a music website and has demonstrated interest in a few 

songs by rating them. Record Linkage could be used to match the potential new customer 

to an existing user whose preferences are already known through their ratings. Once a 

match was made, the current customer's content would be delivered to the potential new 

customer. 

Similarly, online consumers are often offered “suggested” products upon showing 

interest in one. Record linkage could be used to match a customer to a different customer 

with a similar purchase history and recommend additional items to purchase. 

Still, there are other applications such as trying to model and respond to 

customers’ online behavior. Suppose a customer browses a new site, clicking on several 

links before finally making a purchase. Suppose a different customer browses the same 

site, also clicking on several links, but does not make a purchase. If several attributes 

regarding the specific behaviors of the many customers were organized into a dataset, an 

RL algorithm could consume that dataset. An RL algorithm would ultimately produce an 

understandable description of how purchasing visitors behave versus non-purchasing 



 

 

25 

visitors. The trends and/or patterns which an RL algorithm would illuminate would 

provide a right feedback loop to the site designers. Obviously, the results derived by the 

RL algorithm should be incorporated into the site in an attempt to encourage more 

visitors to make a purchase. 

In the domain of competitive sports, it would be useful to be able to predict the 

outcome of a sports team’s game or season. Aligning “duplicates” on how the team 

performed in the past compared to today would yield insight as to how the team will 

perform in the future. Matching a player whose personal sports statistics are similar to a 

retired player would allow a team to predict the future productivity, or the lack thereof, of 

that player as they age. 

The applications outlined above were specific examples of how RL can and has 

been used to solve difficult problems. It is clear that there are a multitude of real world 

situations that can benefit from an RL solution. Record Linkage has been used to help 

solve problems in the following domains. 

 Advertising 

 Marketing 

 Online Product Shopping 

 Online Services Shopping 

 Knowledge Management 

 Biometrics 

 Nature 

 Medical Conditions 

 Network Science 
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 Database Management  

 Sports Predictions 

Although RL has already been applied to many problems, problems remain still 

whose solutions might lie in the application of an RL technique. Increased awareness for 

the need of RL results as buzz words such as “big data” and “analytics” are commonly 

used in both academia and industry. We are inundated with increasing data that needs to 

be integrated, aligned, and matched before further utility can be extracted (Getoor 2012). 
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3. LITERATURE SURVEY 

3.1 Decision Trees  

Decision trees are a structure that some supervised learning techniques use as a 

means to model data. Test data is then run through the decision tree resulting in a 

prediction/decision being made. 

In the broadest sense, a decision tree is simply a graph, although generally a 

decision tree is a tree-like graph comprised of nodes, including but not limited to: 

 The root node 

 Attribute nodes 

 Splitter nodes 

 Prediction nodes 

 Leaf Nodes 

A decision tree is a treestructured plan of a set of testable conditions used in 

order to make a prediction. Decision trees are constructed one node at a time starting with 

the root node. The root node is the first and topmost node. Leaf nodes are the bottom 

most nodes and may contain a prediction/classification. The remainder of the nodes are 

known as the tree’s internal nodes. Attribute and decision nodes are comparators. Each is 

responsible for asking a question about a specific attribute. The tree is traversed in an 

order depending on the answers to the conditions contained within the nodes. Prediction 

nodes connect to splitter or decision nodes and often contain a score. In the CSADT 

algorithm, each boosting iteration adds a splitter node (containing a condition) and two 

predictor nodes (each containing a score). The condition contained in the splitter node is 

selected above other conditions based on its purity score (Pfahringer 2001). 
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Better known decision tree algorithms include: 

 Concept Learning Systems (CLS) 

 Interactive Dichotomizer 3 (ID3) 

 C4.5 (Salzberg 1994) 

 Classification and Regression Trees (CART) 

 Supervised Learning In Quest (SLIQ) 

 Scalable Parallelizable Induction of Decision Tree Algorithm (SPRINT) 

 Alternating Decision Tree (ADT) 

 Cost-Sensitive Alternating Decision Tree (CSADT) 

Regardless of the type of decision tree algorithm, common denominators exist:  

 Input: Training data 

o each entity has several attributes 

o each entity has a classification 

 Input: Conditions (attribute comparators) are derived by one of the following. 

o the attributes themselves are conditions 

o the conditions are provided by the user 

o the conditions are generated by the algorithm 

 Output: Decision tree 

 Root node is determined by one of the following 

o selected via induction 

o created manually 
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 Induction 

o Typically, a decision repeats an induction step, selecting a condition as a 

node upon every iteration until the decision tree is complete. Some trees 

dictate their own completion based on whether or not all of the records in 

the training data have been accurately classified or after having exhausted 

all available conditions. Still other trees run until they have contain an 

arbitrary number of nodes typically dictated by the user. 

The induction step is paramount for a decision tree algorithm because during this 

step, conditions are selected and added to the tree as nodes. “The essence of induction is 

to move beyond the training set, i.e., to construct a decision tree that correctly classifies 

not only objects from the training set, but other (unseen) objects as well.” (Quinlan 

1986). In order to accomplish this, the decision tree should illustrate a relationship 

between an entity’s attributes and its classification.  

3.2 Interactive Dichotomizer 3 

The Interactive Dichotomizer (ID3) is one of the most popular inductive decision 

tree algorithms. In order to understand how the ID3 constructs its decision tree, an 

examples is offered with its respective training dataset and a step-by-step illustration of 

how that training data is used to build a decision tree. Below is a table containing the 

training dataset. There are four records and three attributes: 
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Table 1: ID3 Records 

 Attribute 1 Attribute 2 Attribute 3 Classification 
Regularly 

Votes 
Attends 
Church 

College 
Graduate 

Political 
Typology 

Record 1 No No No Conservative 
Record 2 No No Yes Conservative 
Record 3 No Yes No Liberal 
Record 4 No Yes Yes Liberal 

 

 The three attributes from the above table are listed below (all three attributes 

expect a “Yes” or “No” response). 

 Regularly Votes 

 Attends Church 

 College Graduate 

The classification is a political typology which is expected to be either “Conservative” or 

“Liberal”. The ID3 algorithm is described below in six steps: 

1. Determine the entropy of all available attributes (all attributes are available to 

start with) 

 Equivalent statement: Determine the information gain of all available 

attributes. 

2. Select the attribute whose entropy is lowest 

 Equivalent statement: Select the attribute whose information gain is 

highest. 

3. Split the entities into subsets based on the attribute selected in step 2.  

4. Create a node containing the attribute from step 2 and add it to the decision tree. 

5. Remove the attribute selected from step 2 from the available attributes. 
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6. Repeat steps 1-5 on the “yes” and “no” sides of the node selected in step 2. 

3.2.1 Entropy 

ID3 uses entropy in order to induce which attribute is best. “The induction task is 

to develop a classification rule that can determine the class of any object from its values 

of the attributes.” (Quinlan 1986) Information Theory defines entropy as the measure of 

the uncertainty associated with a variable. It is the measure of chaos associated with an 

attribute. High entropy means chaotic while low entropy means order. In step two above, 

ID3 selects the attribute whose entropy is lowest, or least chaotic. It selects the attribute 

that is the most telling with respect to its classification. For example, if a single attribute 

perfectly classifies all entities, that attribute would have the lowest entropy and therefore 

be selected. Mathematically, entropy is defined as: 

𝐺𝑖𝑣𝑒𝑛 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑆 𝑜𝑓 𝑐 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 

𝐼 = 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑐𝑙𝑎𝑠𝑠  

𝑝(𝐼) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 𝐼 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑[𝑝(𝐼) ∙ log2(𝐼)]

𝑐

𝑖=1

 

3.2.2 Information Gain 

Information gain is the change in entropy. When entropy is low, information gain 

is high. Essentially, the following two statements’ results are identical: 

 Select the attribute whose entropy is lowest 

 Select the attribute whose information gain is highest 

Mathematically, information gain is defined as: 

𝐺𝑎𝑖𝑛(𝑆, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) ∙ Entropy(attribute) 
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3.2.3 ID3 Example 

Information Gain measures how well an attribute correctly classifies entities. The 

data clearly shows that if someone attends church, they are conservative; Conversely, if 

someone does not attend church, they are liberal. A very simple decision tree would 

contain only one node addressing the church attendance attribute. Although this single 

node decision tree would suffice for this small dataset, a detailed description of how the 

ID3 algorithm would digest this dataset and create a decision tree is provided. 

Table 2: ID3 Entropy 

Dataset Entropy 
Conservatives Liberals 

1 0 
1 0 
0 1 
0 1 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠) + 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿𝑖𝑏𝑒𝑟𝑎𝑙𝑠) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠) = −
2

4
log2

2

4
= 0.5 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿𝑖𝑏𝑒𝑟𝑎𝑙𝑠) = −
2

4
log2

2

4
= 0.5 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = 0.5 + 0.5 = 1 

3.2.3.1 Attribute: Regularly Votes 

The next step is to discover which of the available attributes carries the lowest 

entropy (or highest information gain). The first attribute considered is “regularly votes”. 

In order to determine the entropy of the voting attribute, the table and equations are 

provided below. 
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Table 3: ID3 Attribute Vote 

  Votes  !Votes 
Votes !Votes Conservative Liberal Conservative Liberal 

0 1 0 1 1 0 
0 1 0 1 1 0 
0 1 0 1 0 1 
0 1 0 1 0 1 

 

𝐺𝑎𝑖𝑛(𝑆, 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑙𝑦 𝑣𝑜𝑡𝑒𝑠) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐿(𝑣𝑜𝑡𝑒𝑠) 

𝐺𝑎𝑖𝑛(𝑆, 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑙𝑦 𝑣𝑜𝑡𝑒𝑠) = 1 − 𝐿(𝑣𝑜𝑡𝑒𝑠) 

𝐿(𝑣𝑜𝑡𝑒𝑠) = (𝑣𝑜𝑡𝑒𝑠 𝑟𝑎𝑡𝑖𝑜) ⋅ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, 𝑣𝑜𝑡𝑒𝑠) + (! 𝑣𝑜𝑡𝑒𝑠 𝑟𝑎𝑡𝑖𝑜)

⋅ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, ! 𝑣𝑜𝑡𝑒𝑠) 

 

𝑣𝑜𝑡𝑒𝑠 𝑟𝑎𝑡𝑖𝑜 =
0

4
= 0 

! 𝑣𝑜𝑡𝑒𝑠 𝑟𝑎𝑡𝑖𝑜 =
4

4
= 1 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑡𝑒𝑟𝑠 = 0 

𝑆𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑡𝑒𝑟𝑠 𝑖𝑠 0, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, 𝑣𝑜𝑡𝑖𝑛𝑔) = 0 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑣𝑜𝑡𝑒𝑟𝑠 = 4 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑣𝑜𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 = 0 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑛𝑜𝑛 𝑣𝑜𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑛𝑜𝑛 𝑣𝑜𝑡𝑒𝑟𝑠 =
2

4
= 0.5 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑣𝑜𝑡𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 = 2 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑛𝑜𝑛 𝑣𝑜𝑡𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑛𝑜𝑛 𝑣𝑜𝑡𝑒𝑟𝑠 =
2

4
= 0.5 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, ! 𝑣𝑜𝑡𝑖𝑛𝑔) = −0.5 ⋅ 𝑙𝑜𝑔2(0.5) + −0.5 ⋅ 𝑙𝑜𝑔2(0.5) = 1 

 

𝐺𝑎𝑖𝑛(𝑆, 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑙𝑦 𝑣𝑜𝑡𝑒𝑠) = 1 − (0 ⋅ 0 + 1 ⋅ 1) = 0 
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3.2.3.2 Attribute: Attends Church 

The second attribute considered is “attends church”. In order to determine the 

entropy of the church attendance attribute, table and equations are provided below. 

Table 4: ID3 Attribute Church 

  Attends Church  !Attends Church 
Attends 
Church 

!Attends 
Church 

Conservative Liberal Conservative Liberal 

0 1 0 0 1 0 
0 1 0 0 1 0 
1 0 0 1 0 0 
1 0 0 1 0 0 

 

𝐺𝑎𝑖𝑛(𝑆, 𝑎𝑡𝑡𝑒𝑛𝑑𝑠 𝑐ℎ𝑢𝑟𝑐ℎ) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐿(𝑐ℎ𝑢𝑟𝑐ℎ) 

𝐺𝑎𝑖𝑛(𝑆, 𝑎𝑡𝑡𝑒𝑛𝑑𝑠 𝑐ℎ𝑢𝑟𝑐ℎ) = 1 − 𝐿(𝑐ℎ𝑢𝑟𝑐ℎ) 

𝐿(𝑐ℎ𝑢𝑟𝑐ℎ) = (𝑐ℎ𝑢𝑟𝑐ℎ 𝑟𝑎𝑡𝑖𝑜) ⋅ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, 𝑐ℎ𝑢𝑟𝑐ℎ) + (! 𝑐ℎ𝑢𝑟𝑐ℎ 𝑟𝑎𝑡𝑖𝑜)

⋅ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, ! 𝑐ℎ𝑢𝑟𝑐ℎ) 

𝑐ℎ𝑢𝑟𝑐ℎ 𝑟𝑎𝑡𝑖𝑜 =
2

4
= 0.5 

! 𝑐ℎ𝑢𝑟𝑐ℎ 𝑟𝑎𝑡𝑖𝑜 =
2

4
= 0.5 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟𝑠 = 2 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 = 0 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟𝑠 =
0

2
= 0 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 = 2 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟𝑠 =
2

2
= 1 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, 𝑐ℎ𝑢𝑟𝑐ℎ) = −0 ⋅ 𝑙𝑜𝑔2(0) + −1 ⋅ 𝑙𝑜𝑔2(1) = 0 + 0 = 0 

𝐴𝑙𝑡ℎ𝑜𝑢𝑔ℎ 𝑙𝑜𝑔2(0) 𝑖𝑠 𝑎𝑛 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠𝑖𝑛𝑐𝑒 𝑖𝑡 𝑖𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 0, 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑠 0 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟𝑠 = 2 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 = 2 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑛𝑜𝑛 𝑐ℎ𝑢𝑟𝑐ℎ 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑛𝑜𝑛 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟𝑠 =
2

2
= 1 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 = 0 
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𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑛𝑜𝑛 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑛𝑜𝑛 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟𝑠 =
0

2
= 0 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, ! 𝑐ℎ𝑢𝑟𝑐ℎ) = −1 ⋅ 𝑙𝑜𝑔2(1) + −0 ⋅ 𝑙𝑜𝑔2(0) = 0 + 0 = 0 

𝐴𝑙𝑡ℎ𝑜𝑢𝑔ℎ 𝑙𝑜𝑔2(0) 𝑖𝑠 𝑎𝑛 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠𝑖𝑛𝑐𝑒 𝑖𝑡 𝑖𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 0, 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑠 0 

𝐺𝑎𝑖𝑛(𝑆, 𝑎𝑡𝑡𝑒𝑛𝑑𝑠 𝑐ℎ𝑢𝑟𝑐ℎ) = 1 − (0.5 ⋅ 0 + 0.5 ⋅ 0) = 1 

3.2.3.3 Attribute: College Graduate 

The third and final attribute considered is “college graduate”. In order to 

determine the entropy of the college graduate attribute, the table and equations are 

provided below. 

Table 5: ID3 Attribute College Graduate 

  College Graduate  !College Graduate 
College 

Graduate 
!College 

Graduate 
Conservative Liberal Conservative Liberal 

0 1 0 0 1 0 
1 0 1 0 0 0 
0 1 0 0 0 1 
1 0 0 1 0 0 

 

𝐺𝑎𝑖𝑛(𝑆, 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐿(𝑐𝑜𝑙𝑙𝑒𝑔𝑒) 

𝐺𝑎𝑖𝑛(𝑆, 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒) = 1 − 𝐿(𝑐𝑜𝑙𝑙𝑒𝑔𝑒) 

𝐿(𝑐𝑜𝑙𝑙𝑒𝑔𝑒) = (𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑟𝑎𝑡𝑖𝑜) ⋅ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, 𝑐𝑜𝑙𝑙𝑒𝑔𝑒) + (! 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑟𝑎𝑡𝑖𝑜)

⋅ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, ! 𝑐𝑜𝑙𝑙𝑒𝑔𝑒) 

𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =
1

2
= 0.5 

! 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =
1

2
= 0.5 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠 = 2 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 = 1 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠 =
1

2
= 0.5 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 = 1 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑐ℎ𝑢𝑟𝑐ℎ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟𝑠 =
1

2
= 0.5 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, 𝑐𝑜𝑙𝑙𝑒𝑔𝑒) = −0.5 ⋅ 𝑙𝑜𝑔2(0.5) + −0.5 ⋅ 𝑙𝑜𝑔2(0.5) = 0.5 + 0.5 = 1 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠 = 2 
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𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 = 1 

𝑟𝑎𝑡𝑖𝑜: 𝑛𝑜𝑛 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑡𝑜 𝑛𝑜𝑛 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠 =
1

2
= 0.5 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 = 2 

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑛𝑜𝑛 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑖𝑛𝑔 𝑙𝑖𝑏𝑒𝑟𝑎𝑙𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑛𝑜𝑛 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠 =
1

2
= 0.5 ⋅ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, ! 𝑐𝑜𝑙𝑙𝑒𝑔𝑒) = −0.5 ⋅ 𝑙𝑜𝑔2(0.5) + −0.5 ⋅ 𝑙𝑜𝑔2(0.5)

= 0.5 + 0.5 = 1 

𝐺𝑎𝑖𝑛(𝑆, 𝑐𝑜𝑙𝑙𝑒𝑔𝑒 𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠) = 1 − (0.5 ⋅ 1 + 0.5 ⋅ 1) = 0 

The ID3 algorithm finds the “attends church” attribute to have the highest 

information gain and is therefore selected as the first node in its decision tree. This single 

node happens to identify the conservatives from the liberals perfectly. Because all of the 

records are classified correctly after just one node, the tree is deemed complete and 

recurring on either side of the “attends church” node is not necessary nor pursued. If even 

one record is not correctly identified, the algorithm recurs on either side of the newly 

added node using the remaining attributes as candidates. 

3.3  Alternating Decision Tree 

The Alternating Decision Tree (ADT) algorithm creates a top-down induction 

(TDI) tree used to solve binary classification problems. It is a supervised learning 

technique in the fact that it learns from training data (observations, measurements, etc.) 

which are accompanied by labels, or classifications, indicating the class of the 

observations. New data, or testing data, is classified based on the decision tree 

generated by the ADT algorithm after having consumed the training set. The ADT 

algorithm can be used for the task of record linkage (RL). ADT can group records in a 

database as record-pairs and classify these pairs as being the same (positive/duplicate) 

or different (negative/unique). The ADT algorithm creates a tree comprised of splitter 
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nodes and prediction nodes. A splitter node specifies the condition that should be 

tested for the instance and splits into two prediction nodes. One of the two prediction 

nodes is consumed if the splitter node’s condition is satisfied while the other is 

consumed if the splitter node’s condition fails. A prediction node contains a real 

valued score which will be applied to the score of any instances which visit it. An 

ADT tree can be split multiple times at any point (it can attach more than one splitter 

node at any single prediction node). The ADT tree is not a binary tree. If the ADT 

algorithm calculates that the “best” condition should be added as a splitter node to a 

prediction node which already has two or more children, it is added nonetheless. An 

example is provided below where the root node has three children. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Labeled ADT Tree 
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The ADT algorithm is a boosting algorithm. Boosting is a type of ensemble 

method for classification. There are multiple classifiers that work together in some 

fashion for the classification evaluation. Below is a diagram illustrating this process. 

The classifiers are represented as 𝑀𝑥 and are combined to make a prediction: 

 

Figure 2: ADT Classifiers 

The ADT algorithm uses boosting. In boosting, each instance in the training data 

is assigned a weight. A classifier builds and evaluates the training data. The instances 

that the algorithm classifies incorrectly receive an increased weight where 

conversely, the instances that the algorithm classifies correctly decrease in weight. 

Initially, the weights of all the instances sum to 1. As the algorithm progresses, the sum 

of the weights approaches 0. The following images demonstrate a visual overview of 

this concept. 
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Instance space of positives and negatives: 

 

Figure 3:  Instance Space 

A line is drawn representing the initial classifier dividing the top half as a 

negative classification and the bottom half as a positive classification. 

 

Figure 4: Instance Space Separated 

 The misclassified instances are assigned a larger weight and the positively 

classified examples are assigned a smaller weight. 

 

Figure 5: Instance Space Weights 
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 The classification division becomes more complex and accurate to the training 

data as several classifiers are unified. 

 

Figure 6: Instance Space Division Complete 

The pseudo-code for the ADT algorithm is provided below. 

𝑊+(𝑐) =  sum of the weights of positively labeled examples that satisfy predicate  

𝑊−(𝑐) = sum of the weights of negatively labeled examples that satisfy predicate  

𝑊(𝑐) = 𝑊+(𝑐) + 𝑊−(𝑐) the sum of weights of examples that satisfy predicate  

𝑊𝑖 =
1

𝑚
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

𝑎 =
1

2
𝑙𝑛

𝑊+(𝑡𝑟𝑢𝑒)

𝑊−(𝑡𝑟𝑢𝑒)
 

𝑅0 = 𝑎 𝑟𝑢𝑙𝑒 𝑤𝑖𝑡ℎ 𝑠𝑐𝑜𝑟𝑒𝑠 𝑎 𝑎𝑛𝑑 0, 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 true" and condition true." 

𝑅0 is the root node that  may be set using a heuristic 

𝑅0 may be arbitrarily set to bias the tree toward positive or negative predictions 

𝑃 = {𝑡𝑟𝑢𝑒} 

𝐶 =  𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝑧 = 2 (√𝑊+(𝑝 ∧ 𝑐)𝑊−(𝑝 ∧ 𝑐) + √𝑊+(𝑝 ∧ ¬𝑐)𝑊−(𝑝 ∧ ¬𝑐)) + W(¬𝑝) 

 

𝑓𝑜𝑟 𝑗 = 1 … 𝑇 

      𝑝𝜖𝑃, 𝑐𝜖𝐶 𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 

      𝑃+= 𝑝 ∧ 𝑐 + 𝑝 ∧ ¬𝑐 

      𝒂𝒍𝒑𝒉𝒂𝟏 =
𝟏

𝟐
𝒍𝒏

𝑾+(𝒑 ∧ 𝒄) + 𝟏

𝑾−(𝒑 ∧ 𝒄) + 𝟏
 

      𝒂𝒍𝒑𝒉𝒂𝟐 =
𝟏

𝟐
𝒍𝒏

𝑾+(𝒑 ∧ ¬𝒄) + 𝟏

𝑾−(𝒑 ∧ ¬𝒄) + 𝟏
 

      𝑅𝑗 = 𝑛𝑒𝑤 𝑟𝑢𝑙𝑒 𝑤𝑖𝑡ℎ 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑐, & 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑙𝑝ℎ𝑎1 𝑎𝑛𝑑 𝑎𝑙𝑝ℎ𝑎2 

      𝒘𝒊 = 𝒘𝒊𝒆
−𝒚𝒊𝑹𝒋𝒙𝒊 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑅𝑗 
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The first task that the ADT algorithm pursues is determining the initial 

prediction node (the root node). Although any heuristic may be employed at this step.  

Typically, the first prediction adheres to the following: 

𝑙𝑒𝑡 𝑝 = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 

𝑙𝑒𝑡 𝑛 = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 

𝑟𝑜𝑜𝑡 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑓 𝑝 > 𝑛;  𝑟𝑜𝑜𝑡 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑓 𝑛 > 𝑝 

This is the initial bias it has towards the data. For example, if a strong negative 

score is given to this root node, the ADT starts out assuming that the test data is likely to 

have a negative classification. There exists an inverse relationship between false positives 

and false negatives. Often times this initial node is manipulated to bias the ADT 

predictions toward either false positives (a positive root node) or false negatives (a 

negative root node). 

After the root node is determined, the process of selecting the “best” conditions 

and adding them to the tree as splitter nodes begins. In order to select the “best” 

condition, a z-score for every precondition/condition pair is computed. 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 [𝑎, 𝑏, 𝑐, 𝑑] (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 [𝑚, 𝑛, 𝑜] (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒) 

𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑝𝑎𝑖𝑟𝑠[𝑎𝑚, 𝑎𝑛, 𝑎𝑜, 𝑏𝑚, 𝑏𝑛, 𝑏𝑜, 𝑐𝑚, 𝑐𝑛, 𝑐𝑜, 𝑑𝑚, 𝑑𝑛, 𝑑𝑜] 

The z-score is minimized when the pair provides the lowest amount of entropy in 

the system. It is sensitive to the attributes and weights of the instances in the training data 

set. The next splitter node added to the tree will contain condition in the 

precondition/condition pair whose z-score is lowest. 
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Once the “best” condition is determined, the splitter node is created containing the 

“best” condition. Before the splitter node can be added to the tree, two scores need to be 

computed which will ultimately be added as prediction nodes on either side of splitter 

node. The “yes” prediction node’s score is the weighted sum of the positively labeled 

examples divided by the weighted sum of the positively labeled examples that satisfy the 

precondition/condition pair. Likewise, for the “no” prediction node, it is the same 

calculation but for examples that do not satisfy the precondition/condition pair. 

At this point, the splitter node and its two prediction nodes are attached to the 

ADT tree. Next, the newly formed tree is used to evaluate the training data. If an instance 

is misclassified, its weight increases. If an instance is classified correctly, its weight 

decreases. Finally, the process of selecting the next “best” condition (to be added in a 

splitter node) is repeated. 

The algorithm does not automatically decide how many nodes the ADT tree will 

ultimately have. It is an option that the user specifies. Alternately, a heuristic may be 

employed in order to accomplish this task. 

Upon the completion of the ADT tree, the training data is used to evaluate the 

accuracy of the classification. An input instance is fed to the tree (traversing every 

branch). At each prediction node, the prediction node’s score is aggregated to an overall 

score. Once the entire ADT tree traversal is complete, the aggregate score is analyzed. If 

the score is positive, the classification is positive. Conversely, if score is negative, the 

classification is negative. The degree of confidence on a classification is directly 

proportional to the distance its score is from zero. In other words, the more positive a 

score, the more likely an instance is classified correctly as a positive. The more negative 
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the score, the more likely an instance is classified correctly as a negative. Knowledge 

contained in the tree is distributed as multiple paths must be traversed to form 

predictions. Instances that satisfy multiple splitter nodes have the values of these 

prediction nodes that they reach summed to form an overall prediction value. A positive 

sum represents one class and a negative sum represents the other in the two-class setting 

(Holmes 2002). 

3.4 Cost Sensitive Alternating Decision Tree 

The CSADT algorithm is an upgrade from the classic ADT algorithm. It 

augments ADT by including two cost-sensitive variables: 𝐶+ and 𝐶−. Cost-sensitivity 

adds a cost value is assigned to the false positives and false negatives. The higher the 𝐶+, 

the more weight the algorithm places on false positives. The higher the 𝐶−, the more 

weight the algorithm places on false negatives. The fundamental assumption is that the 

instances whose weights are higher are increased faster than those with lower weights. 

The learning focus of CSADT tree will be biased towards instances with higher weights. 
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CSADT implements cost-sensitivity by modifying how the alpha1 and alpha2 

scores are computed as well as how the weights are updated on every iteration. The 

following table shows the difference in calculation for alpha1 and alpha2 between the 

ADT and CSADT algorithms. 

Table 6: ADT alphas vs. CSADT alphas 

ADT CSADT 

𝑎𝑙𝑝ℎ𝑎1 =
1

2
𝑙𝑛

𝑊+(𝑝 ∧ 𝑐) + 1

𝑊−(𝑝 ∧ 𝑐) + 1
 𝑎𝑙𝑝ℎ𝑎1 =

1

2
𝑙𝑛

𝐶+ ∙ 𝑊+(𝑝 ∧ 𝑐) + 1

𝐶− ∙ 𝑊−(𝑝 ∧ 𝑐) + 1
 

𝑎𝑙𝑝ℎ𝑎2 =
1

2
𝑙𝑛

𝑊+(𝑝 ∧ ¬𝑐) + 1

𝑊−(𝑝 ∧ ¬𝑐) + 1
 𝑎𝑙𝑝ℎ𝑎2 =

1

2
𝑙𝑛

𝐶+ ∙ 𝑊+(𝑝 ∧ ¬𝑐) + 1

𝐶− ∙ 𝑊−(𝑝 ∧ ¬𝑐) + 1
 

 

The following table shows the difference in how the ADT and CSADT algorithms 

update weights. 

Table 7: ADT weights vs. CSADT weights 

 ADT CSADT 

if labeled example is positive 𝑤𝑖 = 𝑤𝑖𝑒
−𝑦𝑖𝑅𝑗𝑥𝑖 𝑤𝑖 = 𝐶+ ∙ 𝑤𝑖𝑒

−𝑦𝑖𝑅𝑗𝑥𝑖 

if labeled example is negative 𝑤𝑖 = 𝐶− ∙ 𝑤𝑖𝑒
−𝑦𝑖𝑅𝑗𝑥𝑖 

 

3.4.1 CSADT Advantages 

Without cost-sensitive training, the false positives and false negative have equal 

weights. Weighing false positives differently than false negatives has positive 

implications in industry. Identifying false positives in business-related activities can be 

detrimental. For example, a bank positively identifies a person as being a good candidate 

for a loan, although this person has poor money management. Clearly the bank would be 

making a poor investment in that person. Another example is positively identifying a 
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person as a criminal when in fact they are not. With the ability to weigh false positives 

differently than false negatives, delicate real-world situations such as these could be 

better managed. 

Due to its boosting approach (maintaining a list of weights for every training 

instance), the CSADT algorithm is advantageous, since it counteracts the negative effect 

of training data that contains an unequal distribution of classes. 

CSADT offers other advantages when compared to alternatives as a solution for 

an RL problem. It is easy to interpret how false positives are weighted and how the tree 

decides on a classification. Not only is a classification determined, but also a prediction 

score stating how certain that classification is determined. 

Clustering-based algorithms would perform poorly for record linkage. If non-

consequential attributes cause the record-pairs to be equal-distant, the distance between 

same and different records would be the same. CSADT can use authority data (training 

data) to discover which attributes are similar among duplicates. It can ignore 

attributes that are non-consequential in determining the same identity. 
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The table below (Chen 2011) outlines differences between the following 

algorithms: Decision Trees, Support Vector Machines, Boosted Decision Tree, 

Alternating Decision Tree, and Cost-Sensitive Alternating Decision Tree. 

Table 8: ML Algorithm Comparison 

Algorithm Human 

Interpretability 

Cost 

Sensitivity 

Captures 

Feature 

Interactions 

Handles 

Diverse Feature 

Types 

Decision Tree Yes No Yes Yes 

Support Vector 

Machine 

No With Custom 

Kernel 

With Custom 

Kernel 

Not Easily 

Boosted 

Decision Tree 

No No Yes Yes 

Alternating 

Decision Tree 

Yes No Yes Yes 

Cost-Sensitive 

Alternating 

Decision Tree 

Yes Yes Yes Yes 
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4. PERSON DATA-DRIVEN CSADT REQUIREMENTS  

4.1 Person Data 

The Department of Geography at Texas State University provided a dataset 

containing several hundred thousand person records from public sources 

(Zabasearch.com, Whitepages.com, Addresses.com) accumulated over several years. The 

list below contains the attributes parsed from data gathered. 

1. Full name 

2. First name 

3. Last name 

4. Middle name 

5. Age 

6. Full address 

7. Apartment 

8. City 

9. State 

10. Zip code 

11. Phone 

12. Date 

13. Date of birth 

14. Relatives 

 The person dataset was organized into 14 attributes above. In addition to the 

organization, a series of tasks were employed to filter unwanted records (such as 
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businesses) and well as unwanted text in a person record’s name such as name suffixes, 

name titles, and arbitrary spaces or punctuation. 

 Most of the attributes contained in the dataset are strings (simple text). These text 

attributes require a method to determine the difference between them. Such a method 

needs to determine that Jon and John are similar while Jon and Martha are not. The 

method found to deliver a distance corresponding to strings’ differences would compute 

the Levenshtein distance. 

4.2 Levenshtein Distance 

The Levenshtein distance is used to determine the difference between two strings. 

A string is any finite sequence of characters (i.e., letters, numerals, symbols and 

punctuation marks). The Levenshtein distance is defined as the minimum number of 

modifications to transform one string into another (Levenshtein 1999). A modification 

can be one of the following: 

 An Insertion 

 A Deletion 

 A Substitution 

Below is a table illustrating how the Levenshtein Distance is determined. Every 

cell that contains a number represents the Levenshtein Distance between the [sub] strings 

corresponding to that cell. The bottom-right most cell represents the Levenshtein 

Distance between the complete strings. 

 The cell at the intersection of the K (in CLARKE) and the C (in CLERK) is 

highlighted in red and contains the number four. The four is the Levenshtein distance 

between CLARK and C (CLARK - ‘L’, ‘A’, ‘R’, and ‘K’ = C). 
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The cell at the intersection of the A (in CLARKE) and the E (in CLERK) is a 

highlighted in green and contains the number one. The one is the Levenshtein distance 

between CLA and CLE (just one replacement; the A for the E). 

The cell at the intersection of the E (in CLARKE) and the K (in CLERK) is 

highlighted in orange and contains the number two. The two is the Levenshtein distance 

between CLARKE and CLERK (one replacement; the A for the E and one deletion; the 

E). 

Table 9: Levenshtein Distance Example 

  C L A R K E 

 0 1 2 3 4 5 6 

C 1 0 1 2 3 4 5 

L 2 1 0 1 2 3 4 

E 3 2 1 1 2 3 4 

R 4 3 2 2 1 2 3 

K 5 4 3 3 2 1 2 

 

The Levenshtein Distance was used to determine the difference between two 

records’ attributes. For example, the following are the full names (full name is an 

attribute) from two different records: 

1. Charles Tu 

2. Charles C Tu 
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 The Levenshtein Distance between the full names above is 2 since the minimum 

number of modifications is two. In order to transform the first full name into the other, 

two insertions are required: 

1. Insert a space 

2. Insert the character “C” 

4.3 Record Comparisons  

Each individual record was compared to all other records. Therefore, the number 

of unique record combinations must be computed. The equations and examples below 

explain and demonstrate how the number of unique record-pairs are computed: 

𝑈𝑛𝑖𝑞𝑢𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 =  𝑛 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑐ℎ𝑜𝑠𝑒𝑛 =  𝑟 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑐𝑜𝑟𝑑 𝑃𝑎𝑖𝑟𝑠 =  
𝑛!

(𝑛 − 𝑟)! ∙ 𝑟!
 

An example is offered to demonstrate the equation above. Suppose there are four 

unique records (a, b, c, and d) and we are only interested in pair-wise comparisons. 

𝑛 = 4 (𝑎, 𝑏, 𝑐, 𝑑) 

𝑟 =  2 (𝑡𝑤𝑜 𝑡𝑜 𝑎 𝑝𝑎𝑖𝑟) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑐𝑜𝑟𝑑 𝑃𝑎𝑖𝑟𝑠 =
4!

(4 − 2)! ∙ 2!
=

4!

2! ∙ 2!
=

4 ∙ 3 ∙ 2 ∙ 1

2 ∙ 1 ∙ 2 ∙ 1
=

24

4
= 6 

The unique record-pairs are listed below (which confirms that the computation is 

correct). 

1. (a, b) 

2. (a, c) 

3. (a, d) 
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4. (b, c) 

5. (b, d) 

6. (c, d) 

The graph below illustrates the record-pairs exponential growth as the number of records 

increases. 

 

Figure 7: Record-Pairs' Growth 

When a record is compared to another record, every attribute of each record is 

compared. Assuming these attribute comparisons require a Levenshtein Distance, record 

comparisons are computationally expensive.  

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑎 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑐 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑 𝑝𝑎𝑖𝑟𝑠 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝐼 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

The tree’s time complexity is given by 𝑂(𝑎 ∙  𝑐 ∙  𝑛 ∙  𝑖). Since the CSADT algorithm 

updates condition weights, the space complexity given by 𝑂(𝑐). 
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 For example, suppose a dataset contained 50 records (1,225 record-pairs) 10 

attributes, 50 conditions, and the CSADT algorithm was set to create a tree with 12 

nodes. 

1,225 ∙ 10 ∙ 50 ∙ 12 = 7,350,000 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 

4.4 Intelligent Condition Generation 

One significant advantage of using the CSADT algorithm over another supervised 

learning technique is that the CSADT algorithm will consume as many conditions as it is 

offered, sift through them and select the “best” conditions. Therefore, the number of 

useful conditions offered to the CSADT has a direct impact on its accuracy. The user, 

who is running the algorithm, can always provide as many conditions as they like in an 

effort to maximize the algorithm’s accuracy. However, it would be ideal if well-chosen 

conditions were offered as options regardless of what the user supplies. 

The automatic intelligent condition generation involved determining the average 

Levenshtein distance for each match attribute and each non-match attribute for all record-

pairs. Conditions were added corresponding to these averages. The standard deviation 

(the amount of variation or dispersion of a set of data) was then computed amongst match 

and non-match record-pairs. Conditions were added for each attribute average (for 

matches and non-matches) after adding/subtracting one standard deviation. 

For example, suppose that the average for matches of the first name attribute was 

0.5 (matching records had an average Levenshtein distance of 0.5) and the standard 

deviation was 1. Suppose that the average for non-matches of the first name attribute was 

12 (non-matching records had an average Levenshtein distance of 12) and the standard 
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deviation was 4. The following “intelligent” conditions would have been added 

automatically: 

1. First name <, =, > 0.5 (First name <, =, > match average) 

2. First name <, =, > 1.5 (First name <, = , > match average + match standard 

deviation) 

3. First name <, =, > -0.5 (First name <, =, > match average - match standard 

deviation) 

a. Since the standard deviation subtracted from the match average is 

negative, this condition would not be added as a Levenshtein distance 

can never be negative. Two strings that are identical have a 

Levenshtein distance of zero, meaning that zero insertions, deletions, 

and replacements are required in order to transform one string into the 

other. Nevertheless, this condition is listed only as an example to 

illustrate the intelligent condition generation procedure. 

4. First name <, =, > 12 (First name <, =, >  non-match average) 

5. First name <, =, > 16 (First name <, =, > non-match average + non-match standard 

deviation) 

6. First name <, =, > 8 (First name <, =, > non-match average - non-match standard 

deviation) 

 Although the intelligent condition generation was only implemented to use the 

Levenshtein distance average, it is not limited by this. If a quantitative distance is 

computed between two attributes, the intelligent condition generation will compute the 
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average and the standard deviation for that attribute and create conditions based on those 

results. 
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5. CSADT IMPLEMENTATION 

5.1 Program Outline 

The CSADT algorithm described in section 3 was first implemented in Python. 

The Python implementation required more than 10 minutes to process only 100 person 

records (4,950 person record-pairs). This performance was determined insufficient. The 

computation-heavy sections of the algorithm were re-implemented in C++ in order to 

increase their performance. The table below outlines which sections were implemented 

by which language and a brief description is given. 

Table 10: CSADT Language Implementation 

Python C++ Description 

Input Organizing/Cleaning  Organize/Clean raw input 

Input Conversion 

Output: Training.txt 

 Convert cleaned input into | 

delimited file 

Compare Record-Pairs 

Input: Training.txt 

Generate Unique Pair IDs 

Input: Training.txt 

● Create unique record-

pairs 

● Compute the 

Levenshtein distances 

of all record-pairs’ 

attributes  

 Compare Record-Pairs 

Create Tree 

Output: CSADT.txt 

Create Tree 

Output: CSADT.txt 

Run the CSADT algorithm 

(Delivers a decision tree) 

Illustrate Tree 

Input: CSADT.txt 

 Create an illustrated graph of 

the tree (nodes and edges)  

Classification Accuracy 

Input: CSADT.txt 

 Compute the accuracy of the 

decision tree 

Classify Testing 

Input: CSADT.txt 

 Run testing data through the 

decision tree 
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5.1.1 CSADT Python 

5.1.1.1 Input Organizing/Cleaning 

The input data contained Texan person records scraped from the Internet in 2009, 

2010, and 2012. This input cleaning task organized this information into records 

(containing specific attributes). 

In order to ensure that the person records were representative or individuals living 

in Texas, the addresses of the records were parsed and analyzed for their state and zip 

code. 

 

Figure 8: Texas Filter 

This task was also responsible for filtering out text that was not unique to that 

individual. For example, name titles, name suffixes, and arbitrary spaces were all filtered 

out of the original person records. The snippets below are examples of text that was 

filtered out of person records. 

 

Figure 9: Filter Name Titles 

 

Figure 10: Filter Name Suffixes 
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Figure 11: Input Cleaning Symbols 

 The original contained many “bad” records such as businesses instead of people. 

If a record contained any of the following business words, it was dismissed. 

 

Figure 12: Input Cleaning Words 

 Many records contained unnecessary characters. These unnecessary characters 

were parsed out in an effort to deliver clean person records. 

5.1.1.2 Input Conversion 

Input data is received in either a .csv file or a .xlsx file. The input conversion step 

simply converts either input file type into a pipe, or |, delimited text file named 

Training.txt. It also creates an HTML file containing the input data in a table for easy 

viewing. 

Below is a snippet from an example of a converted input file. The first line 

contains the attribute names while all other lines are legitimate training data 

corresponding to their attributes. 
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Figure 13: Person Record 

5.1.1.3 Compare Record-Pairs 

The decision of which records will be compared to one another is made in this 

step. The result of this decision is a list of record-pairs. Once the record-pairs are 

determined, the Levenshtein distances of selected attributes of every record-pair is 

calculated and saved into a file: ComparisonRecords.txt. 

As demonstrated from the snippet from an example of ComparisonRecords.txt 

below, the differences between attributes are simple integers. The first line contains the 

number of matches in the dataset (23) and the number of non-matches (412). The next 

line contains the names of the attributes. The remaining lines contain: 

1. record-pair combination ID 

 22-29 represents record 22 being compared to record 29 

2. classification (SAME or DIFFERENT) 

3. Levenshtein distances of all attributes 

 

 

 

 

 

Figure 14: Combinations Example 
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5.1.1.4 Create Tree 

The CSADT algorithm has already been discussed in depth in the “Cost Sensitive 

Alternating Decision Tree.” Below is a diagram indicating how it was implemented in 

Python: 

 

Figure 15: ADT Flowchart 
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 Below is an example a four node Tree.txt generated by the Python 

implementation of the CSADT algorithm. 

 

Figure 16: ADT Tree (text) 

5.1.1.5 Illustrate Tree 

In order to better understand the Tree.txt (displayed in the previous section), a tree 

illustrator was developed. Below is the decision tree generated by the cited Tree.txt. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: ADT Tree 
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5.1.1.6 Classification Accuracy 

After a CSADT tree is created, training data must be run through the CSADT tree 

in order to compute the tree’s effectiveness at prediction classifications correctly. In this 

small dataset of only 45 record-pairs, the decision tree was perfect in its prediction 

classifications: 

 

Figure 18: Classification Accuracy 

5.1.1.7 Classify Testing Data 

This last step enables the CSADT algorithm to make prediction classifications on 

real-world testing data. 

5.1.2 CSADT C++ 

The C++ implementation of the CSADT algorithm begins by consuming the 

Training.txt file generated in Python “input conversion” step. The training data is parsed 

into unique record-pairs after which their attributes are compared. Finally a CSADT tree 

is generated. At this point, the C++ implementation is completed. Therefore, all 
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preprocessing, the illustration of the tree, the accuracy computed, and the classification of 

testing data are all still completed by their Python implementations. 

 The Python “Compare Record-Pairs” step was divided into two steps and they are 

explained below: 

● Generate Unique Pair IDs 

● Compare Record-Pairs  

5.1.2.1 Generate Unique Pair IDs 

This step’s sole task is to determine unique record-pair combinations. Below is a 

snippet of the output from this step. 

 

Figure 19: Unique Pairs 

The first line contains the number of records: 30. The second line contains the number of 

combinations: 435. The following lines represent record-pair combinations the first of 

which is “0 1”. The “0 1” represents record 0 and record 1 as a record-pair. 
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5.1.2.2 Compare Record-Pairs 

This step receives the record-pairs just determined as input and computes the 

Levenshtein distances of the attributes of those records. Below is a snippet containing the 

Levenshtein distances of the attributes of the record-pairs: 0-1, 0-2, 0-3, 0-4, and 0-5. 

 

Figure 20: Input Levenshtein Distances 

The C++ code uses threads to improve performance. Below is the code 

responsible for invoking the threads which compute the Levenshtein distances of the 

record-pairs. 

 

Figure 21: Levenshtein Distance Threads 
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Below is the function that each thread performs: 

 

Figure 22: Levenshtein Distance Thread Function 

5.1.2.3 Create Tree 

The CSADT C++ version invokes a thread on every precondition when searching 

for the best condition among the remaining conditions. This dramatically decreases the 

computation time. 

 

Figure 23: C++ Pre-Condition Threads 
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6. EVALUATION 

6.1 Person Data Computation Time Analysis 

The evaluation of the CSADT algorithm on people records includes an analysis of 

the computation time for creating the CSADT tree model and the accuracy of the 

predictions made based on that model. All other tasks required an insignificant amount of 

computation time when compared to the creation of the CSADT tree. 

The following variables were studied in order to understand their effect on the 

computation time required in the creation of a CSADT tree. 

● Number of conditions considered by the CSADT algorithm 

● Number of nodes in the CSADT tree 

● Number of records consumed by the CSADT algorithm 

All experiments were completed on a desktop computer with the following 

specifications: 

● 8-Core 3.6GHz AMD FX-8150 Zambezi Socket AM3+ 125W Processor 

● 32GB of RAM 

● 256GB SSD 

Below are three tables which show that the creation of the CSADT tree consumed 

the most computation time compared to the other tasks. This is independent of which 

implementation was used (C++ Threaded, C++ Non-Threaded, or Python). 
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Table 11: C++ Threaded Tasks 

Number of Nodes 10 C++ Threaded 
Number of Records 100 
Number of Conditions 25 50 100 125 150 
Generate Unique Pair 
IDs 0.04 s 0.04 s 0.03s 0.04 s 0.05 s 
Compare Record-Pairs 0.38 s 0.41 s 0.4 s 0.37 s 0.41 s 
Create Tree 9.69 s 15.01 s 30.07 s 36.92 s 45.24 s 
Translate Tree 0.02 s 0.02 s 0.02 s 0.02 s 0.02 s 
Illustrate Tree 0.24 s 0.2 s 0.18 s 0.19 s 0.2 s 
Classification Accuracy 1.4 s 1.5 s 1.45 s 1.52 s 1.42 s 

 

Table 12: C++ Non-Threaded Tasks 

Number of Conditions 169 C++ Non-Threaded 
Number of Records 100 
Number of Nodes 5 7 10 12 15 
Generate Unique Pair 
IDs 0.04 s 0.03 s 0.04 s 0.03 s 0.04 s 
Compare Record-Pairs 0.38 s 0.41 s 0.4 s 0.44 s 0.41 s 
Create Tree 62.47 s 120.62 s 232.29 s 320.08 s 496.66 s 
Translate Tree 0.02 s 0.03 s 0.02 s 0.02 s 0.02 s 
Illustrate Tree 0.14 s 0.16 s 0.2 s 0.23 s 0.23 s 
Classification Accuracy 0.83 s 1.1 s 1.64 s 1.8 s 2.2 s 

 

Table 13: Python Tasks 

Number of Conditions 20 Python 
Number of Nodes 5 
Number of Records 10 20 30 40 50 
Input Conversion 0.02 s 0.03 s 0.02 s 0.02 s 0.02 s 
Compare Record-Pairs 0.05 s 0.15 s 0.32 s 0.55 s 0.84 s 
Create Tree 5.2 s 22.84 s 52.18 s 85.59 s 144.98 s 
Illustrate Tree 0.12 s 0.11 s 0.11 s 0.11 s 0.13 s 
Classification Accuracy 0.03 s 0.05 s 0.09 s 0.13 s 0.22 s 
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6.1.1 CSADT Creation Time vs. Conditions 

The number of conditions considered affects the computation time required for 

the creation of the CSADT tree. As the number of conditions increases, its computation 

time increases. The graph below confirms this and shows that the computation time 

required by the Python implementation was significantly higher than both the C++ Non-

Threaded and C++ Threaded implementations. A tree created from 30 records, 100 

conditions, creating only 5 nodes finished in ~272 seconds using the Python 

implementation while the same tree required less than 1 second for the C++ Threaded 

implementation (~272 times faster). 

 

Figure 24: CSADT Creation Time vs. Conditions 

In the graph above, the C++ Non-Threaded and C++ Threaded lines are too close 

to each other to differentiate them. Therefore, additional experiments were performed to 

demonstrate the difference, in computation time, between the C++ Non-Threaded and 

C++ Threaded implementations. 
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Figure 25: C++ CSADT Creation Time vs. Conditions 

The computation time required in the creation of the CSADT tree is significantly 

decreased by using C++ as the language of implementation when compared to Python. 

Additionally, the computation time required in the creation of the CSADT tree is again 

significantly decreased by employing a threaded C++ implementation vs. a non-threaded 

solution. 

6.1.2 CSADT Creation Time vs. Nodes 

The number of nodes in a CSADT tree affects the computation time required for 

the creation of the CSADT tree. As the number of nodes increases, its computation time 

increases. The graph below confirms this and shows that the computation time required 

by the Python implementation was significantly higher than both the C++ Non-Threaded 

and C++ Threaded implementations. A tree created from 30 records, 20 conditions, 

creating only 10 nodes finished in ~206 seconds using the Python implementation while 

the same tree required less than 2 seconds for the C++ Threaded implementation (~103 

times faster). 
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Figure 26: CSADT Creation Time vs. Nodes 

Again, the C++ Non-Threaded and C++ Threaded lines are too close to each 

other. Therefore, additional experiments were performed to demonstrate the difference, in 

computation time, between the C++ Non-Threaded and C++ Threaded implementations. 
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Figure 27: C++ CSADT Creation Time vs. Nodes 

6.1.3 CSADT Creation Time vs. Records 

The number of records consumed by the CSADT tree algorithm affects the 

computation time required for the creation of the CSADT tree. As the number of records 

increases, its computation time increases. The graph below confirms this and shows that 

the computation time required by the Python implementation was significantly higher 

than both the C++ Non-Threaded and C++ Threaded implementations. A tree created 

from 100 records, 20 conditions, creating only 5 nodes finished in ~618 seconds using the 

Python implementation while the same tree required less than 3 seconds for the C++ 

Threaded implementation (~206 times faster). 
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Figure 28: CSADT Creation Time vs. Records 

Again, the C++ Non-Threaded and C++ Threaded lines are too close to each other 

to illustrate any differences. Therefore, additional experiments were performed to 

demonstrate the difference, in computation time, between the C++ Non-Threaded and 

C++ Threaded implementations. 
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Figure 29: C++ CSADT Creation Time vs. Records 

6.1.4 CSADT Threads 

 The C++ Threaded implementation invoked threads in batches to minimize 

runtime. The image below shows that the time required in the creation of the CSADT tree 

is directly related to the number of dedicated CPUs available. 

 

Figure 30: C++ CPU Threads 

 As shown the image above, all eight processors listed are at 100%. It is also 

apparent that all eight processors at 100% usage for ~5 seconds, at which time they are 

released only to be put back to work in less than 1 second. The implementation invokes a 
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set number of threads at a time. In essence, the threads are invoked in batches. In an 

effort to simulate a set number of cores available the computer running the CSADT 

algorithm, the CSADT algorithm was run on the same dataset invoking 1, 2, 3, … and so 

on threads per batch. The dataset included: 

 178 conditions 

 15 nodes 

 100 records 

 Again, all experiments were run on an 8-core desktop computer. From the graph 

below, it is clear that the threads per batch decreases the CSADT Tree Creation 

computation time noticeably until ~8 threads per batch. 

 

Figure 31: C++ CSADT Threading Performance 

6.2 Person Data Accuracy Analysis 

In order to quantitatively judge the accuracy of the CSADT tree, its training data 

was replayed on itself. Record-pairs were predicted as matches or non-matches. 
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Comparing a record-pair’s prediction to its actual classification dictates whether the 

prediction/classification is a true positive, true negative, false positive, or false negative. 

● True positives 

○ when two records are predicted as a match and they actually are a match 

● True negatives 

○ when two records are predicted as not matching and they actually do not 

match 

● False positives 

○ when two records are predicted as a non-match when they are actually a 

match 

● False negatives 

○ when two records are predicted as not matching while they are actually a 

match 

The description above is illustrated in the confusion matrix below. 

Table 14: Confusion Matrix 

 Actual 
Negative Positive 

Prediction Negative True Negatives False Positives 
Positive False Negatives True Positives 

 

 Once the record-pairs have been classified and the confusion matrix is created, the 

precision, recall, and accuracy were computed: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝐴𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐴𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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 Nearly all of the input record-pairs are non-matches. The training data included 

644 records (207,046 record-pairs). Of the 207,046 record-pairs, 206,612 were non-

matches (99.79%) while only 434 were matches (0.21%). Therefore, if a decision tree 

predicted every record pair as a non-match, it would have 99.79% accuracy. Clearly, the 

accuracy is not the most important metric to pursue in this record linkage challenge. 

Instead, precision and recall are explored depth as it is far more important to have a high 

precision and high recall concerning this person-record dataset. 
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6.2.1 CSADT Precision 

 The figure below contains the precision percentages derived from CSADT trees 

generated from 171 conditions, 100 records (4,950 record-pairs), containing 1 to 30 

nodes. 

 

Figure 32: Precision Results 
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 The following two graphs visually illustrate the effect of varying cost sensitivities 

on precision. 

 

 

 

 

 

 

 

 

Figure 33: Precision Comparisons C+ 

 

 

 

 

 

 

 

 

Figure 34: Precision Comparisons C- 

 After adding 30 nodes, two cost sensitivity pairs resulted in the highest precision 

at 94.24%: C+=10, C-=1 and C+=1, C-=3. 
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6.2.2 CSADT Recall 

 The figure below contains the recall percentages derived from CSADT trees 

generated from 171 conditions, 100 records (4,950 record-pairs), containing 1 to 30 

nodes. 

 

Figure 35: Recall Results 
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 The following two graphs visually illustrate the effect of varying cost sensitivities 

on recall.

 

Figure 36: Recall Comparisons C+ 

 

Figure 37: Recall Comparisons C- 

 After adding 30 nodes, one cost sensitivity pair resulted in the highest recall at 

87.39%: C+=1, C-=10. 
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6.2.3 CSADT Accuracy 

The training dataset contained 644 records. From 644 records, 207,046 unique 

record-pairs can be derived. Using 171 conditions generated automatically, multiple 

experiments were run. The accuracy metrics concerning the CSADT tree whose 

combined recall and precision was highest is described shown below. 

Table 15: Best CSADT tree results 

Description Value 

Cost Sensitivity + 1 

Cost Sensitivity - 10 

Number of Records 644 

Training Data Record-Pairs 207,046 

Number of Matches 434 

Number of Non-Matches 206,612 

Number of Predicted Matches 444 

Number of Predicted Non-Matches 206,602 

True Positives 388 (89.40%) 

True Negatives 206,612 (99.97%) 

False Positives 56 

False Negatives 46 

Recall 89.40% 

Precision 87.39% 

Accuracy 99.95% 
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The following is the actual decision tree that can predict with 99.95% accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: People CSADT Tree 99.95% Accuracy 
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6.3 NBA Dataset 

The CSADT algorithm can be applied to non RL classification problems. To 

demonstrate this, NBA statistics were gathered and organized into training data.  

6.3.1 NBA Statistics 

The following statistics are available on http://www.databasebasketball.com. 

1. Player regular season statistics 

2. Player regular season career totals 

3. Player playoff statistics 

4. Player playoff career totals 

5. Player All-Star game statistcs 

6. Team regular season statistics  

7. Complete draft history 

The sixth element above (team regular season statistics) includes the following 

basketball attributes:  

1. Points 

2. Offensive rebounds 

3. Defensive rebounds 

4. Rebounds 

5. Assists 

6. Steals 

7. Blocks 

8. Turn-overs 

9. Personal fouls 

http://www.databasebasketball.com/
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10. Field goal attempted 

11. Field goal made 

12. Free throws attempted 

13. Free throws made 

14. Three pointers attempted 

15. Three points 

6.3.2 NBA Accuracy Analysis 

There are 30 teams in the NBA; 15 are Western Conference teams while the other 

15 are Eastern Conference teams. At the end of the regular season, the top eight of either 

conference advance to the playoffs. Given all 30 teams with the 15 attributes listed above, 

the following question was proposed to test the CSADT algorithm on, “Will team X 

merit a spot in the playoffs?” 

 Given enough nodes, the CSADT algorithm was able to reach over 80% accuracy 

with greater than 75% precision and recall. Given the ever unpredictable sports 

landscape, these results are surprisingly encouraging. 
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10 Folds Cross Validation with 10 Nodes:  

 Precision: 77.64% 

 Recall: 67.57% 

 Accuracy: 78.58% 

 

Figure 39: NBA CSADT Tree 1 
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Figure 40: NBA CSADT Tree 2 

2 Folds Cross Validation with 25 Nodes 

 Precision: 86.42% 

 Recall: 75.27% 

 Accuracy: 80.79% 
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7. FUTURE WORK AND CONCLUSION 

7.1 Person Data Accuracy Improvements 

There are several ideas that may improve the accuracy of the CSADT algorithm. 

Below are a few ideas that could be explored. 

7.1.1 Additional Conditions 

Typically, ML algorithms use attributes as conditions. Sometimes multiple 

conditions are generated based upon one attribute. Oftentimes attributes contain 

information that could be extracted into something new to use as a condition. For 

example, a phone number is one of the attributes present in the dataset used in this 

experiment. As expected, records’ phone numbers were compared wholesale. Additional 

conditions stemming from the phone number attribute could be derived from the 

following procedure: 

1. Extract the area code out of the phone number 

2. Determine the geographical location of the extracted area code from step 1  

3. Calculate the distance between the locations determined in step 2  

4. Determine average distances between locations in step 3 (in matches and non-

matches) 

5. Create condition based on the averages found in step 4 

7.2 Person Data Speed Improvements 

In the CSADT algorithm’s current implementation, several updates could be 

made in order to increase the speed of computation. 
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7.2.1  Language Selection 

This system was originally implemented in Python. While Python served its 

purpose in allowing the system to be developed relatively quickly, it failed to produce 

sufficient speed requirements. The CSADT algorithm contains several procedures that 

could be parallelized. One of the major limitations of the Python language is that it does 

not support threads, effectively making it impossible to run tasks in parallel. Therefore, in 

an effort to speed up the computation time required in generating a decision tree, the 

sections of the project requiring the most CPU cycles were developed C++. C++ was an 

obvious choice as it supports threads (using boost C++ libraries) and its speed is 

unrivaled largely due to it being strongly typed and closer to the hardware than most 

languages. 

7.2.2 Parallelization 

Decision tree algorithms iterate over a loop which is responsible for selecting a 

condition (through induction) to add as a node to the tree it is creating. The CSADT 

algorithm iterates over the function computeArgMin as this function selects the “best” 

condition to add to the decision tree. Improving this function could dramatically improve 

the speed of the CSADT algorithm because of its high computation cost. While this 

function has already been improved by replacing its original iterative solution with a 

threaded solution, the task of optimizing this function (and the functions it calls) is far 

from over. By reviewing the code provided below, it is easily seen that for each 

precondition, a thread is kicked off which will consider the available (unselected) 
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conditions as candidates for the next splitter node. 

 

Figure 41: Thread per Pre-Condition 

For example, suppose there were three preconditions and eight available, not yet 

selected, conditions remaining. Three threads would be created, each considering the 

eight available conditions. For each thread (for each precondition), the “best” available 

condition is found by first computing the z-values of the precondition/condition pairs for 

that thread. The thread’s precondition is paired with each of the eight considered 

conditions and the z-values for each pair is computed. The precondition/condition pair 

whose z-value was the lowest is determined to be that thread’s (or that precondition’s) 

“best” condition. 

After the three threads have finished considering all eight available conditions, the 

three z-values (representing the lowest z-value precondition/condition pair from each 

thread) would be compared. The precondition/condition pair whose z-value was the 

lowest would be selected as the next splitter node in the decision tree. The splitter node 

(containing the condition in the precondition/condition pair whose z-value was lowest) 
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would be attached to the node already in the tree containing the precondition from the 

precondition/condition pair. The number of z-values needed to be calculated on each 

iteration is given by the following formula:  

𝑛𝑢𝑚𝑏𝑒𝑟_𝑧_𝑣𝑎𝑙𝑢𝑒𝑠 =  𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∙  𝑛𝑢𝑚𝑏𝑒𝑟_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 
 

Creating n threads, independent of the number of preconditions (instead of 

creating a thread per condition), and distributing the z-value computations uniformly 

amongst the n threads would speed up this costly function.  

Another improvement that could be made is within the determineLocalMinZValue 

function (which each thread runs). The available conditions are stored in a two-

dimensional vector (a C++ data-type provided by the standard template library, or STL, 

which most closely resembles a stack). The outer dimenson’s length is equal to the 

number of attributes in the dataset while the inner dimension contains the conditions 

available concerning its outer dimenson’s attribute:  

 

Figure 42: Available Conditions 
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The function (determineLocalMinZValue) iterates through the available 

conditions via a nested for-loop: 

 

Figure 43: Local Minimum Z Value 

This iterative approach could be replaced with a threaded approach. The z-value 

for each condition could be calculated, in theory, at the same time meaning that the task 

is parallelizable. The current upper limit of determineLocalMinZValue is:  

𝑂(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ∙ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) 

If threads replaced this nested for-loop, the upper limit would be improved to: 

𝑂(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ∙ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟_𝑝𝑒𝑟_𝑡ℎ𝑟𝑒𝑎𝑑) 

To illustrate this, suppose there were ten attributes and ten conditions per attribute 

with each z-value computation requiring ten seconds. The current solution would require 

more than 15 minutes to complete the task: 

10 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ∙  10 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 =  100 𝑧 –  𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠  

100 𝑧 –  𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ∙  10 𝑠 =  1000 𝑠 (16 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 40 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

In the proposed threaded solution, suppose there were ten threads. 100 z-values 

would still need to be computed, but this task would be broken into ten equal parts, 

distributed amongst the ten threads to be pursued in parallel. Each of the ten threads 
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would be responsible for ten z-value computations which results in only 100 seconds (1 

minute 40 seconds): 

10 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ∙  10 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 =  100 𝑧 –  𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

100 𝑧 –  𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 / 10 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 =  10 𝑧 –  𝑣𝑎𝑙𝑢𝑒𝑠 𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑎𝑑 

10 𝑧 –  𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ∙  10 𝑠 =  100 𝑠 (1 𝑚𝑖𝑛𝑢𝑡𝑒 40 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑎𝑑  

Since threads run in parallel, the time required for computing all 100 z-values is 

only 1 minute 40 seconds. It is clear that parallelizing this task could greatly decrease the 

required time the CSADT algorithm takes.  

Buried several layers deep in determineLocalMinZValue are two additional 

functions that could be improved:  

 getNegInstancesThatSatisfyCondition 

 getPosInstancesThatSatisfyCondition 
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These functions are responsible for ascertaining which entities satisfy a given condition 

and which do not. Below are their implementations:  

 

Figure 44: Positive Instances 

 

Figure 45: Negative Instances 

Both of the functions contain nested for-loops. As explained earlier, these nested 

for-loops could be replaced with a threaded solution to drastically increase the speed 

performance of these two functions.  

The last three places that could be improved are similar situations in that an 

iterative nested for-loop solution could be replaced by a threaded solution. However, 

improving these areas would not significantly improve the speed of the CSADT 

algorithm as they are outside of the induction step. Nevertheless, they are explained 

below.  

In order to train on sample data, records must be coupled together to make a 

record-pair. Although the task of generating which record should be compared to which 

other record was improved by employing a threaded solution, the output of this 

information has yet to undergo this same procedure as the code snippet demonstrates: 



 

 

93 

 

Figure 46: Output Record-Pairs 

After the pairs are known, the “difference” of two person records needs to be 

constructed. The difference of any two record-pairs is simply a data-structure containing 

the Levenshtein Distances between each of the records’ attributes. In the snippet below, 

this nested for-loop approach could be replaced with threads to save computation time. 

 

Figure 47: Output People Levenshtein Distances 

Lastly, the automatic condition generation code could be improved by replacing 

its nested for-loop implementation with threads as shown below. 
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Figure 48: Intelligent Condition Generation 

7.3 NBA Improvements 

In order to improve the accuracy of the answer to the question posed (or to ask 

other interesting questions) in the application of the NBA statistical data to the CSADT 

algorithm, additional conditions need to be created by analyzing the data. For instance, 

knowing the best ten offensive players in the league could be incorporated as a condition. 

This data is available. 

 

Figure 49: NBA SQL 1 

Perhaps there is some correlation between a team’s tallest player and their 

win/loss record. Again, this information is available: 
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Figure 50: NBA SQL 2 

With the ability to model such knowledge, it is likely that the accuracy could be 

improved for the question asked. 

7.4 Interface 

A graphical user-friendly interface would provide easier interaction between the 

CSADT algorithm and a user. This would allow anyone to upload their data to be 

processed by the CSADT algorithm.  
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APPENDIX 

Person Records 
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