FALL DETECTION
WITH NAIVE BAYES

Student: Po-Teng Tseng
Advisor: Dr. Anne Hee Hiong Ngu

Outline

m Introduction

m Methodology

m Data Collection

m Data Processing

m Model Generation

m Work Flow

m Experiment (3 types)

m Conclusion

Introduction

m This independent study explores the use of streaming accelerometer data from a
commodity based smartwatch device to detect falls.

m [he majority of current fall detection applications require specially designed
hardware and software, which make them expensive and inaccessible to the general
public.

m We collected 270 simulated fall data from 7 different people when they fell on a
mattress with different styles.

m We established the baseline accuracy for fall detection that can be achieved by
using Naive Bayes and experimented with different factors that can be used to
iImprove the baseline accuracy.

Methodology

m Collect data with smartphone and smartwatch
- Android phone and Microsoft Band 2
- Volunteer fall on a mattress while wearing the watch

m Generate model with collected data

m Classify new data by generated model

m Count consecutive result to decide if there is a fall (heuristic function)
- A way to predict time series condition while using a point-by-point model

Data Collection

m Implement a mobile app to record data from smartwatch and smartphone

m The mobile app has a button which will mark all incoming data as fall when pressing

— Less labor intensive
- The good timing of pressing needs practice to achieve

m 270 falls were collected from 7 different people to increase diversity

m Data frequency is 32ms

Data Processing

m R script to process data.

m Resultant acceleration

AL]
B Smin
- The minimum acceleration in a period of time.

m Smax
- The maximum acceleration in a period of time.

m Cvfast
- The resultant difference between SMax and Smin in three directions

Model Generation

m Implement a Java program using Weka'’s library.
- Generate the model

m Itcanalso
— Run simulation
— @Give static result

Work Flow

linear accelerometer_ X, linear accelerometer_y, linear accelerometer_z, ms_accelerometer_ X, ms_accelerometer_y, ms_accelerometer_z, ms_gyros

m Raw data

15978903, 0.022526503, 0.24414253, -0.06323242, 0.6206055, -0.81591797, null, null, null, null, null, null, null, null, null, null, null,
.15978903, 0.022526503, 0.24414253, -0.06982422, 0.63525397, -0.81835943, null, null, null, null, null, null, null, null, null, null, null
.06706977, 0.010727406, 0.031069757, -0.06665039, 0.62133795, -0.81152344, null, null, null, null, null, null, null, null, null, null, nul
.10940784, 0.007859707, -0.017905235, -0.06665039, 0.62133795, -0.81152344, null, null, null, null, null, null, null, null, null, null, nu
.084400356, 0.005696535, 0.03644848, -0.063964844, 0.623291, -0.81518555, -0.063964844, 0.623291, -0.81518555, -9.573171, 47.43903, -51.40
.03397715, 0.029271604, 0.11166, -0.06762695, 0.62402344, -0.81909186, -0.06762695, 0.62402344, -0.81909186, 0.39634147, 2.012195, -0.2134
.026883366, 0.037628416, 0.08444787, -0.072753906, 0.6169434, -0.8198243, -0.072753906, 0.6169434, -0.8198243, 0.18292683, 2.1036587, -0.9

.0716272, 0.040759563, -0.016096115, -0.07104492, 0.6245117, -0.8251953, -0.07104492, 0.6245117, -0.8251953, 0.57926834, 2.0731707, -1.0365
.04347724, 0.023989916, 0.08808613, -0.06567383, 0.6198731, -0.8156738, -0.06567383, 0.6198731, -0.8156738, -0.24390246, 1.4939024, -1.1585
.020094158, -0.009230137, 0.071772575, -0.06933594, 0.6201172, -0.81176764, -0.06933594, 0.6201172, -0.81176764, 0.27439025, 1.2804878, -1.
.056479454, 0.017471075, -0.0073165894, -0.07373047, 0.6169434, -0.81176764, -0.07373047, 0.6169434, -0.81176764, -0.21341464, 0.9146341, -
.09066541, 0.043016195, -0.0956173, -0.0742187S5, 0.6164551, -0.8120117, -0.0742187S5, 0.6164551, -0.8120117, -0.15243903, 0.9146341, -1.1585
.11378306, 0.03278756, -0.077561386, -0.07348633, 0.61157227, -0.8137207, -0.07348633, 0.61157227, -0.8137207, 0.152439%903, 0.73170733, -1.2
.11718017, 0.022707224, -0.06947899, -0.07495117, 0.6098633, -0.82177734, -0.07495117, 0.6098633, -0.82177734, 0.48780492, 0.57926834, -0.8

[Processed da‘l‘_a "resultant”, "cvfast”, "smax", "smin", "outcome"

(with labeling)

.07897774215205,0.644385222430007,1.07887774215205,0.94844720398065, " notfall"”
.954836730418577,0.644385222430007,1.07897774215205,0.94844720398065, " notfall"”
.973214327930463,0.644385222430007,1.07897774215205,0.94844720398065, " notfall"”
.973214327930463,0.644385222430007,1.07887774215205,0.94844720398065, " notfall"
.978561333521144,0.644385222430007,1.07887774215205,0.94844720398065, " notfall"
.01840589659131,0.644385222430007,1.07887774215205,0.94844720398065, " notfall"
.01840589659131,0.644385222430007,1.07897774215205,0.94844720398065, " notfall"”
.01840589659131,0.644385222430007,1.07887774215205,0.94844720398065, " notfall"
.02169065790228,0.182779344275114,1.02884833417595,0.94844720398065, " notfall"”
.01354439072987,0.182779344275114,1.02884833417595,0.94844720398065, " notfall"
.01354439072987,0.182779344275114,1.02884833417595,0.94844720398065, " notfall"™
.01354439072987,0.182779344275114,1.02884833417595,0.94844720398065, " notfall"”
.02884833417595,0.182779344275114,1.02884833417595,0.94844720398065, " notfall"”
.01887515402743,0.182779344275114,1.02884833417595,0.94844720398065, " notfall"

L S N N = I = = B B =

Work Flow (continued)

m The Origina| data 0.629371,6.416013,3.86924,0.402126," notfall’
0.982495,6.416013,3.86924,0.402126, ' notfall’
- Data is collected, processed and then 0.894114,6.416013,3.86924,0.402126,"' notfall’
used to train the model 1.029598,6.416013,3.86924,0.402126, "' notfall’
1.403548,6.416013,3.86924,0.402126, ' notfall’
m The new data 1.009324,6.188228,3.86924,0.402126,"' notfall’
3.86924,6.188228,3.86924,0.402126,' fall’
- Data is collected, processed and then 2.767565,6.188228,3.86924,0.402126,"' fall’
classified by model 3.816125,6.188228,3.86924,0.402126, ' fall’
, . 1.996147,6.188228,3.86924,0.402126,"' fall’
- Count consecutive positive results 1.873868,6.188228,3.86924,0.402126, ' fall’
- The thresholds which decide the range of 1-873868, 6.186228,3.86924,0.402126, ° "
. . 0.56803,6.188228,3.86924,0.402126, "' notfall’
a fall is important and may vary with 1.134361,1.936517,1.701014,0.402126, ' notfall’
different version of model 1.170538,1.936517,1.701014,0.402126, ' notfall’
0.402126,1.936517,1.701014,0.402126, ' notfall®
1.486898,1.936517,1.701014,0.402126, ' notfall’

Heuristic function

Int count = O;

Boolean flagFall = false;

If (result_instance == fall) {
count++;

}

else if (count is in the range of threshold){
flagFall = true;
count = 0O;

} else {

count = O;

Experiment

m Run model against test data to get labeled test data, and then count the
consecutive positive results to decide if there is a fall.

m Fall and ADL should be tested separately
— Pure full test
— Pure ADL test

m 2/3 of collected fall data was used as train data for Naive Bayes model.

m 1/3 of collected fall data was used as test data for pure full

Experiment (continued)

m 1. Baseline version
- The first version of model only trained with fall data

m 2. Improved version by adding ADL data into training data

- Relate with future plan which automatically collects false positive data from the
users and re-trains the model

m 3. Improved version by using heuristic function on top of whole system to check
phone acceleration
- If the user falls and the phone is in the user’s pocket, there should be
acceleration happening

Experiment - baseline

m T[rain data
- 2/3 of fall data used as train data for Naive Bayes model.

m Test data (pure fall)
- 1/3 of fall data used as test data for pure full

m Test data (ADL)
- Quick sitting
- Waving
— Throwing
- Jogging

Result (Experiment - baseline)

m Pure fall
6~50 75/90 83.33%
5~50 77/90 85.56%
4~50 82/90 91.11%

3~50 85/90 94.44%

Result (Experiment - baseline)

m Pure ADL
6~50 1/90 (Ow 1j) 98.89%
5~50 4/90 (Ow 4j) 95.56%
4~50 14/90 (2w 12j) 84.44%

3~50 23/90 (7w 16j) 74.44%

Result (Experiment - baseline)

m Overall
6~50 91.11%
5~50 90.56%
4~50 87.78%

3~50 84.44%

Result (Experiment - ADL improved)

m T[rain data
- 2/3 of fall data
- Additional ADL data

m Test data (pure fall)
- 1/3 of fall data used as test data for pure full

m Testdata (ADL)
- Quick sitting
- Waving
- Throwing
- Jogging

Result (Experiment - ADL improved)

m Pure fall
6~50 74/90 82.22% V
5~50 76/90 84.44% V
4~50 80/90 88.89% V¥

3~50 84/90 93.33% V¥

Result (Experiment - ADL improved)

m Pure ADL

6~50

5~50

4~50

3~50

1/90 (Ow 1))
3/90 (Ow 3j)
9/90 (Ow 9j)

18/90 (2w 16j)

98.89%

96.69% A

90.00% A

80.00% A

Result (Experiment - ADL improved)

m Overall
6~50 90.56% A
5~50 90.56%
4~50 89.44% A

3~50 86.67% A

Result (Experiment - phone improved)

m Same train data and test data as ADL improved experiment.

m Add a heuristic function on top of the whole system to double check if a predicted
fall is a real fall.

— Check resultant acceleration from phone
- Set (resultant acceleration > 5.0) as the condition

Result (Experiment - phone improved)

m Pure fall
6~50 74/90 82.22%
5~50 76/90 84.44%
4~50 80/90 88.89%

3~50 84/90 93.33%

Result (Experiment - phone improved)

m Pure ADL

6~50

5~50

4~50

3~50

1/90 (Ow 1))
2/90 (Ow 2j)
8/90 (Ow §j)

14/90 (Ow 14;)

98.89%

97.78% A

91.11% A

84.44% A

Result (Experiment - phone improved)

m Overall
6~50 90.56%
5~50 91.11% A
4~50 90.00% A

3~50 88.89% A

Best combination

m Improved version with phone acceleration

Threshold Overall Accuracy Fall Accuracy

4~50 90.00% 88.89%

3~50 88.89% 93.33%

Conclusion

m Adding more ADL data does improve the performance of predicting ADL, but it’s a
tradeoff which may weaken the ability of predicting fall.

m Considering phone acceleration on top of the prediction can filter out more ADLSs,
which reduces false positive rate. Waving can be filtered out well.

— Allowing us to set threshold [3, 50] while still maintaining decent overall
accuracy

m Thejogging ADL is hard to perfectly handled. If the user can avoid jogging, the app
will have a very good accuracy.

