The Big Picture

Chapter 3
• We want to examine a given computational problem and see how difficult it is.
• Then we need to compare problems
• Problems appear different

• We want to cast them into the same kind of problem
 • decision problems
 • in particular, language recognition problem
Decision Problems

A decision problem is simply a problem for which the answer is yes or no (True or False). A decision procedure answers a decision problem.

Examples:

- Given an integer n, does n have a pair of consecutive integers as factors?

- The language recognition problem: Given a language L and a string w, is w in L?

Our focus
The Power of Encoding

• For problem already stated as decision problems.
 • encode the inputs as strings and then define a language that contains exactly the set of inputs for which the desired answer is yes.

• For other problems, must first reformulate the problem as a decision problem, then encode it as a language recognition task.
Pattern matching on the web:

• Problem: Given a search string w and a web document d, do they match? In other words, should a search engine, on input w, consider returning d?

• The language to be decided: $\{<w, d> : d \text{ is a candidate match for the query } w\}$
Everything is a String

Does a program always halt?

- Problem: Given a program p, written in some standard programming language, is p guaranteed to halt on all inputs?

- The language to be decided:

$$\text{HP}_{\text{ALL}} = \{p : p \text{ halts on all inputs}\}$$
Everything is a String

What If we’re not working with strings?

Anything can be encoded as a string.

<X> is the string encoding of X.
<X, Y> is the string encoding of the pair X, Y.
Everything is a String

Primality Testing

• Problem: Given a nonnegative integer \(n \), is it prime?

• An instance of the problem: Is 9 prime?

• To encode the problem we need a way to encode each instance: We encode each nonnegative integer as a binary string.

• The language to be decided:

\[
\text{PRIMES} = \{w : \text{w is the binary encoding of a prime number}\}.
\]
Everything is a String

• Problem: Given an undirected graph G, is it connected?

• Instance of the problem:

```
  1 —— 2 —— 3
   \  \  \
   4  5
```

• Encoding of the problem: Let V be a set of binary numbers, one for each vertex in G. Then we construct $\langle G \rangle$ as follows:
 • Write $|V|$ as a binary number,
 • Write a list of edges,
 • Separate all such binary numbers by “/”.

$101/1/10/10/11/1/100/10/101$

• The language to be decided: CONNECTED = \{ $w \in \{0, 1, /\}^* : w = n_1/n_2/…/n_i$, where each n_i is a binary string and w encodes a connected graph, as described above \}.
Turning Problems Into Decision Problems

Casting multiplication as decision:

• Problem: Given two nonnegative integers, compute their product.

• Reformulation: Transform computing into verification.

• The language to be decided:

\[L = \{ w \text{ of the form: } <\text{integer}_1> \times <\text{integer}_2> = <\text{integer}_3>, \text{ where: } \text{integer}_n \text{ is any well formed integer, and } \text{integer}_3 = \text{integer}_1 \times \text{integer}_2 \} \]

\[
\begin{align*}
12 \times 9 &= 108 \\
12 &= 12 \\
12 \times 8 &= 108
\end{align*}
\]
Casting sorting as decision:

• Problem: Given a list of integers, sort it.

• Reformulation: Transform the sorting problem into one of examining a pair of lists.

• The language to be decided:

\[L = \{ w_1 \neq w_2 : \exists n \geq 1 \]
\[
(w_1 \text{ is of the form } <int_1, int_2, \ldots int_n>, \]
\[
w_2 \text{ is of the form } <int_1, int_2, \ldots int_n>, \text{ and } \]
\[
w_2 \text{ contains the same objects as } w_1 \text{ and } \]
\[
w_2 \text{ is sorted}) \}

Examples:

1, 5, 3, 9, 6#1, 3, 5, 6, 9
1, 5, 3, 9, 6#1, 2, 3, 4, 5, 6, 7
Turning Problems Into Decision Problems

Casting database querying as decision:

• Problem: Given a database and a query, execute the query.

• Reformulation: Transform the query execution problem into evaluating a reply for correctness.

• The language to be decided:

$L = \{d \# q \# a: d \text{ is an encoding of a database, } q \text{ is a string representing a query, and } a \text{ is the correct result of applying } q \text{ to } d}\}$

Example:

(name, age, phone), (John, 23, 567-1234)
(Mary, 24, 234-9876)#(select name age=23)#
(John)
The Traditional Problems and their Language Formulations are Equivalent

By equivalent we mean that either problem can be reduced to the other.

If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other functions that can be built using a machine of equal or lesser power.
An Example

Consider the multiplication example:

\[L = \{w \text{ of the form:} \}
\]

\[<integer_1> \times <integer_2> = <integer_3>, \text{ where:} \]

\[integer_n \text{ is any well formed integer, and} \]

\[integer_3 = integer_1 \times integer_2 \} \]

Given a multiplication machine, we can build the language recognition machine:

Given the language recognition machine, we can build a multiplication machine:
Languages and Machines

- SD Languages (Recursively enumerable)
- D Languages (Recursive)
- Context-Free Languages
- Regular Languages
- FSMs
- PDAs
- Turing Machines
Finite State Machines

An FSM to accept a^*b^*:

- We call the class of languages acceptable by some FSM **regular**
- There are simple useful languages that are not regular:
 - An FSM to accept $A^nB^n = \{a^n b^n : n \geq 0\}$
 - How can we compare numbers of a’s and b’s?
 - The only memory in an FSM is in the states and we must choose a fixed number of states in building it. But no bound on number of a’s
Pushdown Automata

Build a PDA (roughly, FSM + a single stack) to accept $A^nB^n = \{a^n b^n : n \geq 0\}$

Example: $aaabb$

Stack:
Another Example

• Bal, the language of balanced parentheses
 • contains strings like (()) or ()(), but not ()))()
 • important, almost all programming languages allow parentheses, need checking
 • PDA can do the trick, not FSM

• We call the class of languages acceptable by some PDA context-free.

• There are useful languages not context free.
 • $A^nB^nC^n = \{a^nb^nc^n : n \geq 0\}$
 • a stack wouldn’t work. All popped out and get empty after counting b
Turing Machines

A Turing Machine to accept $A^nB^nC^n$:

\[
\begin{array}{cccccccccccc}
\ldots & \square & \square & \square & a & a & b & b & b & \square & \square & \square & \ldots \\
\end{array}
\]

Finite State Controller
\[s, q_1, q_2, \ldots, h_1, h_2\]
Turing Machines

• FSM and PDA (exists some equivalent PDA) are guaranteed to halt.
• But not TM. Now use TM to define new classes of languages, D and SD
• A language L is in D iff there exists a TM M that halts on all inputs, accepts all strings in L, and rejects all strings not in L.
 • in other words, M can always say yes or no properly
• A language L is in SD iff there exists a TM M that accepts all strings in L and fails to accept every string not in L. Given a string not in L, M may reject or it may loop forever (no answer).
 • in other words, M can always say yes properly, but not no.
 • give up looking? say no?
• $D \subset SD$

• $Bal, A^nB^n, A^nB^nC^n \ldots$ are all in D
 • how about regular and context-free languages?
• In SD but D: $H = \{<M, w> : \text{TM } M \text{ halts on input string } w\}$
• Not even in SD: $H_{all} = \{<M> : \text{TM } M \text{ halts on all inputs}\}$
Rule of Least Power: “Use the least powerful language suitable for expressing information, constraints or programs on the World Wide Web.”

- Applies far more broadly.
- Expressiveness generally comes at a price
 - computational efficiency, decidability, clarity
Languages, Machines, and Grammars

- SD (recursively enumerable)
- TMs
- Unrestricted grammar

- D (recursive)
- Context-sensitive languages
- LBAs
- Context-sensitive grammar

- Context-free languages
- NDPDAs
- Context-free grammar

- DCF
- DPDAs

- Regular languages
- FSMs
- Regular grammar / regular expression
A Tractability Hierarchy

- **P**: contains languages that can be decided by a TM in polynomial time

- **NP**: contains languages that can be decided by a nondeterministic TM (one can conduct a search by guessing which move to make) in polynomial time

- **PSPACE**: contains languages that can be decided by a machine with polynomial space

\[P \subseteq NP \subseteq PSPACE \]

- **P = NP?** Biggest open question for theorists
Decision Procedures

Chapter 4
Decidability Issues

Goal of the book: be able to make useful claims about problems and the programs that solve them.
• cast problems as language recognition tasks
• define programs as state machines whose input is a string and output is *Accept* or *Reject*
Decision Procedures

An *algorithm* is a detailed procedure that accomplishes some clearly specified task.

A *decision procedure* is an algorithm to solve a decision problem.

Decision procedures are programs and must possess two correctness properties:

• must halt on all inputs
• when it halts and returns an answer, it must be the correct answer for the given input
Decidability

• A decision problem is **decidable** iff there exists a decision procedure for it.

• A decision problem is **undecidable** iff there exists no a decision procedure for it.

• A decision problem is **semidecidable** iff there exists a semidecision procedure for it.

 • a semidecision procedure is one that halts and returns *True* whenever *True* is the correct answer. When *False* is the answer, it may either halt and return *False* or it may loop (no answer).

• Three kinds of problems:

 • decidable (recursive)
 • not decidable but semidecidable (recursively enumerable)
 • not decidable and not even semidecidable
Checking for even numbers: Is the integer x even?

Let / perform truncating integer division, then consider the following program:

```
even(x:integer)=
    If((x/2)*2 = x) then return True else return False
```

Is the program a decision procedure?
Undecidable but Semidecidable

Halting Problem: For any Turing machine M and input w, decide whether M halts on w.
- w is finite
- $H = \{<M, w> : \text{TM } M \text{ halts on input string } w\}$
- asks whether M enters an infinite loop for a particular input w

Java version: Given an arbitrary Java program p that takes a string w as an input parameter. Does p halt on some particular value of w?

haltsOnw(p: program, w: string) =
 1. simulate the execution of p on w.
 2. if the simulation halts return $True$ else return $False$.

Is the program a decision procedure?
Not even Semidecidable

Halting-on-all (totality) Problem: For any Turing machine M, decide whether M halts on all inputs.

- $H_{\text{ALL}} = \{<M> : \text{TM } M \text{ halts on all inputs}\}$
- If it does, it computes a total function
 - equivalent to the problem of whether a program can ever enter an infinite loop, for any input
 - differs from the halting problem, which asks whether M enters an infinite loop for a particular input

Java version: Given an arbitrary Java program p that takes a single string as input parameter. Does p halt on all possible input values?

```
haltsOnAll(p:program) =
  1. for $i = 1$ to infinity do:
      simulate the execution of $p$ on all possible input strings of length $i$.
  2. if all the simulations halt return True else return False.
```

Is the program a decision procedure? A semidecision procedure?
Grammars, Languages, and Machines

- Grammar
 - Generates
 - Recognizes or Accepts

- Language

- Machine
Clarification

A machine M recognizes a language L iff M accepts all and only those strings in L.

A machine M decides a language L iff M accepts all strings in L and rejects all strings not in L.

recognize = accept = semi-decide ≠ decide

When a machine halts, it must either accepts or rejects. So for machines that always halt, accept implies decide.

A language L is called semi-decidable iff some TM accepts L.
A language L is called decidable iff some TM decides L.

SD: set of semi-decidable languages
D: set of decidable languages (a subset of SD by definition. actually a proper subset of SD by proof)