Binary heap data structure

• A binary heap is a special kind of binary tree
 - has a restricted structure (must be complete)
 - has an ordering property (parent value is smaller than child values)
• Used in the following applications
 - Priority queue implementation: supports enqueue and deleteMin operations in $O(\log N)$
 - Heap sort: another $O(N \log N)$ sorting algorithm.

Binary Heap: structure property

• Complete binary tree: a tree that is completely filled
 - every level except the last is completely filled.
 - the bottom level is filled left to right (the leaves are as far left as possible).

Complete Binary Trees

• A complete binary tree can be easily stored in an array
 - place the root in position 1 (for convenience)
Complete Binary Trees

Properties

- The height of a complete binary tree is \(\text{floor}(\log_2 N) \) (floor = biggest int less than)
- In the array representation:
 - put root at location 1
 - use an int variable (size) to store number of nodes
 - for a node at position \(i \):
 - left child at position \(2i \) (if \(2i \) <= size, else \(i \) is leaf)
 - right child at position \(2i + 1 \) (if \(2i + 1 \) <= size, else \(i \) is leaf)
 - parent is in position \(\text{floor}(i/2) \) (or use integer division)

Binary Heap: ordering property

- In a heap, if \(X \) is a parent of \(Y \), \(\text{value}(X) \) is less than or equal to \(\text{value}(Y) \).
- the minimum value of the heap is always at the root.

Binary Heap: operations

- constructor, destructor
- isEmpty() (returns bool)
- makeEmpty()
- insert(x)
- findMin() (returns ItemType)
- deleteMin()

Goal: logarithmic time (O(log n)) or better
- Must maintain heap properties after each operation

Heap class declaration

```cpp
template<class ItemType>
class Heap_3358 {
public:
    Heap_3358();
    void makeEmpty();
    bool isEmpty() const;
    void insert(const ItemType &);
    ItemType findMin();
    void deleteMin();
private:
    int theSize; //number of nodes in tree
    vector<ItemType> array; //tree stored as array
};
```
Heap: simple methods

```cpp
template<class ItemType>
Heap<ItemType>::Heap() : array(11), theSize(0) {
}

template<class ItemType>
void Heap<ItemType>::makeEmpty() {
    theSize = 0;
}

template<class ItemType>
bool Heap<ItemType>::isEmpty() const {
    return theSize==0;
}

template<class ItemType>
ItemType Heap<ItemType>::findMin() {
    assert(!isEmpty());
    return array[1];
}
```

Heap: insert(x)

- First: add a node to tree.
 - must be at next available location, size+1, in order to maintain a complete tree.
- Now maintain the ordering property:
 - if x is greater than its parent: done
 - else swap with parent
 - repeat
- Called “percolate up” or “reheap up”
- preserves ordering property
- $O(\log n)$, work is proportional to path length

```cpp
template<class ItemType>
void Heap<ItemType>::insert(const ItemType& newItem) {
    //make newItem the sentinel
    array[0] = newItem;
    //resize if necessary
    if (theSize+1 == array.size())
        array.resize(array.size()*2 + 1);

    //Percolate up
    theSize++; //increment size
    int hole = theSize; //the new location
    for ( ; newItem < array[hole/2]; hole=hole/2) // hole/2=parent
        array[hole] = array[hole/2]; // move value down path ("swap")
    array[hole] = newItem; // place in final spot
}
```

Places newItem in position 0, the parent of the root. Makes the loop stop if newItem is the new minimum.
Heap: deleteMin()

- Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated:
 - move last element up to the root
 - find smaller of the two children
 - if the smaller child is smaller than the parent: swap it with the parent, repeat
 - otherwise, we are done
- Called “percolate down” or “reheap down”
- preserves ordering property
- O(log n), work is proportional to path length

Called "percolate down" or "reheap down"
preserves ordering property
O(log n), work is proportional to path length

Heap: deleteMin()

```
template<class ItemType>
void Heap_3358<ItemType>::deleteMin()
{
  assert(!isEmpty());
  ItemType tmp = array[theSize]; //save this for final swap
  theSize--;
  //Percolate down
  int hole, child;
  for (hole = 1 ; hole*2 <= theSize; hole = child) {
    child = hole * 2;    // the left child
    // if there’s a right child, compare and pick lesser
    if (child != theSize && array[child+1] < array[child])
      child++;
    if (array[child] < tmp)    // compare lesser child to parent
      array[hole] = array[child];    // if lesser, swap
    else
      break;
  }
  array[hole] = tmp;           // complete last swap
}
```

Heapsort

- Using a heap to sort a list:
 1. insert every item into a binary heap
 2. extract every item by calling deleteMin N times.

- Runtime Analysis: O(N log N)
 - step 1: insert is O(log N) and it’s done N times, so it’s O(N log N)
 - step 2: deleteMin is O(log N), and it’s done N times, so it’s O(N log N)
Heapsort

- Space analysis:
 - currently two arrays are needed:
 - one for heap, one for sorted list.
 - If we use a Max heap (parent is always greater than children) then we can re-use the empty part of array for the sorted elements.
 - Then we need only one array.

After inserting all items into the heap

After swapping root element into its place

After percolate down

NO NEED TO CONSIDER AGAIN
After swapping root element into its place

After percolate down

After swapping root element into its place

After percolate down

NO NEED TO CONSIDER AGAIN
After swapping root element into its place

After percolate down

After swapping root element into its place

After percolate down

NO NEED TO CONSIDER AGAIN
After swapping root element into its place

ALL ELEMENTS ARE SORTED