What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself

How can a function call itself?

- What happens when this function is called?

```c
void message() {
  cout << "This is a recursive function.\n";
  message();
}
int main() {
  message();
}
```

How can a function call itself?

- Infinite Recursion:

 This is a recursive function.
 ...
Recursive message() modified

- How about this one?

```c++
void message(int n) {
    if (n > 0) {
        cout << "This is a recursive function.\n";
        message(n-1);
    }
}
int main() {
    message(5);
}
```

Tracing the calls

- 6 nested calls to message:

  ```
  message(5):
  outputs “This is a recursive function”
  calls message(4):
  outputs “This is a recursive function”
  calls message(3):
  outputs “This is a recursive function”
  calls message(2):
  outputs “This is a recursive function”
  calls message(1):
  outputs “This is a recursive function”
  calls message(0):
    does nothing, just returns
  ```

- depth of recursion (#times it calls itself) = 5:

Why use recursion?

- It is true that recursion is never **required** to solve a problem
 - Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources
- Some repetitive problems are more easily and naturally solved with recursion
 - Iterative solution may be unreadable to humans

Why use recursion?

- Recursion is the primary method of performing repetition in most functional languages.
 - Implementations of functional languages are designed to process recursion efficiently
 - Iterative constructs added to functional languages often don’t fit well in the functional context.
- Once programmers adapt to solving problems using recursion, the code produced is generally shorter, more elegant, easier to read and debug.
How to write recursive functions

- Branching is required (If or switch)
- Find a base case
 - one or more values for which the result of the function is known (no repetition required to solve it)
 - no recursive call is allowed here
- Develop the recursive case
 - For a given argument (say n), assume the function works for a smaller value (n-1).
 - Use the result of calling the function on n-1 to form a solution for n

Recursive function example

Mathematical definition of n! (factorial of n)

\[
\begin{align*}
\text{if } n=0 &\text{ then } n! = 1 \\
\text{if } n>0 &\text{ then } n! = 1 \times 2 \times 3 \times \ldots \times n
\end{align*}
\]

- What is the base case for n?
- If we assume \((n-1)!\) can be computed, how can we get \(n!\) from that?

Recursive function example

```c
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
```

```c
int main() {
    int number;
    cout << "Enter a number ";
    cin >> number;
    cout << "The factorial of " << number << " is " << factorial(number) << endl;
}
```
Tracing the calls

- Calls to factorial:

 factorial(4):
 return 4 * factorial(3);
calls factorial(3):
 return 3 * factorial(2);
calls factorial(2):
 return 2 * factorial(1);
calls factorial(1):
 return 1 * factorial(0);
calls factorial(0):
 return 1;

- Each return statement must wait for the result of the recursive call to compute its result

Tracing the calls

- Calls to factorial:

 factorial(4):
 return 4 * factorial(3);
calls factorial(3):
 return 3 * factorial(2);
calls factorial(2):
 return 2 * factorial(1);
calls factorial(1):
 return 1 * factorial(0);
calls factorial(0):
 return 1;

- Every call except the last makes a recursive call
- Each call must make the argument smaller

Recursive functions over lists

- Many recursive functions (over integers) look like this:

  ```java
  type f(int n) {
    if (n==0) {
      // do the base case
    } else {
      // ... f(n-1) ...
    }
  }
  ```

- You can write recursive functions over lists using the length of the list instead of n
 - base case: length=0 => empty list
 - recursive case: assume f works for list of length n-1, what is the answer for a list with one more element?

Recursive function example

- Recursive function to compute sum of a list of numbers
- What is the base case?
 - length=0 (empty list) sum = 0
- If we assume we can sum the first n-1 items in the list, how can we get the sum of the whole list from that?
 - sum (list) = sum (list[0..n-2]) + list[n-1]
Recursive function example
sum of a list: array

```c
int sum(int a[], int size) { //size is number of elems
    if (size==0)
        return 0;
    else
        return a[size-1] + sum(a,size-1);
}
```

For a list with size = 4:
```
a[3] + sum(a,3)=
```

Recursive function example
sum of a list: vector

```c
int sum(vector<int> v) {
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sum(v);
    }
}
```

• Aren’t we changing the vector argument each time?
 - No (why not?)
 - So something else bad is happening each time.

Sometimes an auxiliary or driver function is needed to set things up before starting recursion.

Recursive function example
sum of a list: vector

```c
int sumRec(vector<int> & v) {
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sumRec(v);
    }
}
```

```
int sum (const vector<int> & v) {
    vector<int> v1 (v); //make one copy
    return sumRec(v1);
}
```

Recursive function example
sum of a list: linked list

Add a sum function to list_3358_pointers.h

```c
int List_3385::sum() {
    return sumNodes(head);
}
```

```c
int List_3358::sumNodes(Node *p) {
    if (p==NULL)
        return 0;
    else {
        int x = p->value;
        return x + sumNodes(p->next);
    }
}
```
Summary of the list examples

- How to determine empty list, single element, and the shorter list to perform recursion on.

<table>
<thead>
<tr>
<th></th>
<th>Array</th>
<th>Vector</th>
<th>Linked list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>size==0</td>
<td>v.size()==0</td>
<td>p==NULL</td>
</tr>
<tr>
<td>last(or first) element</td>
<td>a[size-1]</td>
<td>v.back()</td>
<td>p->value</td>
</tr>
<tr>
<td>shorter list</td>
<td>use size-1</td>
<td>v.pop_back()*</td>
<td>p->next</td>
</tr>
</tbody>
</table>

*may need to copy original vector

Recursive function example

count characters in a string

- Recursive function to count the number of times a specific character appears in a string
- We will use the string member function substr to make a smaller string
 - str.substr (int pos, int length);
 - pos is the starting position in str
 - length is the number of characters in the result

```cpp
text = "hello there";
text.substr(3,5); // "lo th"
```

Recursive function example

count characters in a string

```cpp
int numChars(char search, string str) {
    if (str.empty()) {
        return 0;
    } else {
        if (str[0]==search)
            return 1+numChars(search, str.substr(1,str.size()));
        else
            return numChars(search, str.substr(1,str.size()));
    }
}
```

Three required properties

of recursive functions

- **A Base case**
 - a non-recursive branch of the function body.
 - must return the correct result for the base case
- **Smaller caller**
 - each recursive call must pass a smaller version of the current argument.
- **Recursive case**
 - assuming the recursive call works correctly, the code must produce the correct answer for the current argument.
Recursive function example

greatest common divisor

• Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers without a remainder
• This is a variant of Euclid's algorithm:

 gcd(x, y) = y if y divides x evenly, otherwise
 gcd(x, y) = gcd(y, remainder of x/y)

• It's a recursive definition
• If x < y, then x % y is x.
• Keeps the larger number in x

Recursive function example

greatest common divisor

• Code:

```cpp
int gcd(int x, int y) {
    cout << "gcd called with " << x << " and " << y << endl;
    if (x % y == 0) {
        return y;
    } else {
        return gcd(y, x % y);
    }
}

int main() {
    cout << "GCD(9,1): " << gcd(9,1) << endl;
    cout << "GCD(1,9): " << gcd(1,9) << endl;
    cout << "GCD(9,2): " << gcd(9,2) << endl;
    cout << "GCD(70,25): " << gcd(70,25) << endl;
    cout << "GCD(25,70): " << gcd(25,70) << endl;
}
```

• Output:

 gcd called with 9 and 1
 GCD(9,1): 1
 gcd called with 1 and 9
 GCD(1,9): 1
 gcd called with 9 and 2
 gcd called with 2 and 1
 GCD(9,2): 1
 gcd called with 70 and 25
 gcd called with 25 and 20
 gcd called with 20 and 5
 GCD(70,25): 5
 gcd called with 25 and 70
 gcd called with 70 and 25
 gcd called with 25 and 20
 gcd called with 20 and 5
 GCD(25,70): 5

Recursive function example

Fibonacci numbers

• Series of Fibonacci numbers:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

• Starts with 0, 1. Then each number is the sum of the two previous numbers

 \[F_0 = 0 \]
 \[F_1 = 1 \]
 \[F_i = F_{i-1} + F_{i-2} \quad (\text{for } i > 1) \]

• It's a recursive definition
Recursive function example
Fibonacci numbers

- Code:

```c
int fib(int x) {
    if (x<=1)
        return x;
    else
        return fib(x-1) + fib(x-2);
}
```

```c
int main() {
    cout << "The first 13 fibonacci numbers: " << endl;
    for (int i=0; i<13; i++)
        cout << fib(i) << " ";
    cout << endl;
}
```

The first 13 fibonacci numbers:
0 1 1 2 3 5 8 13 21 34 55 89 144

Recursive function example
Fibonacci numbers

- Modified code to count the number of calls to fib:

```c
int fib(int x, int &count) {
    count++;
    if (x<=1)
        return x;
    else
        return fib(x-1, count) + fib(x-2, count);
}
```

```c
int main() {
    cout << "The first 14 fibonacci numbers: " << endl;
    for (int i=0; i<14; i++) {
        int count = 0;
        int x = fib(i,count);
        cout << "fib (" << i << ")= " << x
        << "  # of recursive calls to fib = " << count << endl;
    }
}
```

The first 14 fibonacci numbers:
fib (0)= 0 # of recursive calls to fib = 1
fib (1)= 1 # of recursive calls to fib = 1
fib (2)= 1 # of recursive calls to fib = 3
fib (3)= 2 # of recursive calls to fib = 5
fib (4)= 3 # of recursive calls to fib = 9
fib (5)= 5 # of recursive calls to fib = 15
fib (6)= 8 # of recursive calls to fib = 25
fib (7)= 13 # of recursive calls to fib = 41
fib (8)= 21 # of recursive calls to fib = 67
fib (9)= 34 # of recursive calls to fib = 109
fib (10)= 55 # of recursive calls to fib = 177
fib (11)= 89 # of recursive calls to fib = 287
fib (12)= 144 # of recursive calls to fib = 465
fib (13)= 233 # of recursive calls to fib = 753
...
fib (40)= 102,334,155 # of recursive calls to fib = 331,160,281

Recursive function example
Fibonacci numbers

- Counting calls to fib: output

The first 14 fibonacci numbers:
fib (0)= 0 # of recursive calls to fib = 1
fib (1)= 1 # of recursive calls to fib = 1
fib (2)= 1 # of recursive calls to fib = 3
fib (3)= 2 # of recursive calls to fib = 5
fib (4)= 3 # of recursive calls to fib = 9
fib (5)= 5 # of recursive calls to fib = 15
fib (6)= 8 # of recursive calls to fib = 25
fib (7)= 13 # of recursive calls to fib = 41
fib (8)= 21 # of recursive calls to fib = 67
fib (9)= 34 # of recursive calls to fib = 109
fib (10)= 55 # of recursive calls to fib = 177
fib (11)= 89 # of recursive calls to fib = 287
fib (12)= 144 # of recursive calls to fib = 465
fib (13)= 233 # of recursive calls to fib = 753
...
fib (40)= 102,334,155 # of recursive calls to fib = 331,160,281

Recursive function example
Fibonacci numbers

- Why are there so many calls to fib?
 fib(n) calls fib(n-1) and fib(n-2)

- Say it computes fib(n-2) first.

- When it computes fib(n-1), it computes fib(n-2) again
 fib(n-1) calls fib((n-1)-1) and fib((n-1)-2)
 = fib(n-2) and fib (n-3)

- It’s not just double the work. It’s double the work for each recursive call.

- Each recursive call does more and more redundant work
Recursive function example
Fibonacci numbers
- Trace of the recursive calls for fib(5)

```
Fib(5)  
  |    |  
Fib(4)  Fib(3)  
  |    |    |  
Fib(3)  Fib(2)  Fib(2)  Fib(1)  
  |    |    |    |  
Fib(2)  Fib(1)  Fib(0)  Fib(1)  Fib(0)  
  |    |    |    |    |  
Fib(1)  Fib(0)  
```

- The number of recursive calls is
 - larger than the Fibonacci number we are trying to compute
 - exponential, in terms of n
- Never solve the same instance of a problem in separate recursive calls.
 - make sure f(m) is called only once for a given m

Binary Search
- Find an item in a list, return the index or -1
- Works only for SORTED lists
- Compare target value to middle element in list.
 - if equal, then return index
 - if less than middle elem, search in first half
 - if greater than middle elem, search in last half
- If search list is narrowed down to 0 elements, return -1
- Divide and conquer style algorithm

Binary Search
Iterative version
```c
int binarySearch(const int array[], int size, int value)
{
    int first = 0,         // First array element
    last = size - 1,      // Last array element
    middle,                // Mid point of search
    position = -1;         // Position of search value
    bool found = false;    // Flag

    while (!found && first <= last) {
        middle = (first + last) / 2;     // Calculate mid point
        if (array[middle] == value) {    // If value is found at mid
            found = true;
            position = middle;
            break;
        } else if (array[middle] > value) // If value is in lower half
            last = middle - 1;
        else
            first = middle + 1;           // If value is in upper half
    }
    return position;
}
```
Binary Search
Example

The target of your search is 42. Given the following list of integers, record the values of first, last, and middle during a binary search. Assume the following numbers are in an array:

1 7 8 14 20 42 55 78 101 112 122 170 179 190

Repeat the exercise with a target of 82

Binary Search
Recursive version

```cpp
int binarySearchRec(const int array[], int first, int last, int value) {
    int middle; // Mid point of search
    if (first > last)
        return -1;
    middle = (first + last)/2;
    if (array[middle]==value)
        return middle;
    if (array[middle]<value)
        return binarySearchRec(array, middle+1, last, value);
    else
        return binarySearchRec(array, first, middle-1, value);
}

int binarySearch(const int array[], int size, int value) {
    return binarySearchRec(array, 0, size-1, value);
}
```

Binary Search
Running time efficiency

- What is the Big-O analysis of the running time?
- N is the length of the list to search
- Worst case: keep dividing N by 2 until it is less than 1.
- This is equivalent to doubling 1 until it gets to N.

\[
\begin{align*}
1 \times 2 &= 2 \\
2 \times 2 &= 4 \\
4 \times 2 &= 8 \\
8 \times 2 &= 16 \\
16 \times 2 &= 32 \\
32 \times 2 &= 64 \\
\end{align*}
\]

After 6 steps we have \(2^6\)

After k steps we have \(2^k\)

- How many steps does it take to double 1 and get to N?
- \(2^k = N\)
- How do we solve that for k?
- Definition of logarithm:
 \(\log_B N = k \text{ if } B^k = N\)
 The logarithm is the exponent

- So solving for k:
 \(k = \log_2 N\)
Binary Search
Running time efficiency

- How many steps does it take to repeatedly double 1 and get to N?
 \[\log_2 N \]

- How many steps does it take to repeatedly divide N by 2 and get to 1?
 \[\log_2 N \]

- Since (worst case) binary search repeatedly divides the length of the list by 2, until it gets down to one, its running time is
 \[O(\log N) \]