Dynamic data structures

- Linked Lists
 - dynamic structure, grows and shrinks with data
 - most operations are linear time (O(N)).
- Can we make a simple data structure that can do better?
- Trees
 - dynamic structure, grows and shrinks with data
 - most operations are logarithmic time (O(log N)).

Tree: non-recursive definition

- **Tree**: set of nodes and directed edges
 - **root**: one node is distinguished as the root
 - Every node (except root) has exactly exactly one edge coming into it.
 - Every node can have any number of edges going out of it (zero or more).
- **Parent**: source node of directed edge
- **Child**: terminal node of directed edge

Tree: example

- edges are directed down (source is higher)
- D is the parent of H. Q is a child of J.
- **Leaf**: a node with no children (like H and P)
- **Sibling**: nodes with same parent (like K, L, M)
Tree: recursive definition

- **Tree:**
 - is empty or
 - consists of a root node and zero or more nonempty subtrees, with an edge from the root to each subtree.

Tree terms

- **Path:** sequence of (directed) edges
- **Length of path:** number of edges on the path
- **Depth of a node:** length of path from root to that node.
- **Height of a node:** length of longest path from node to a leaf.
 - height of tree = height of root, depth of deepest leaf
 - leaves have height 0
 - root has depth 0

Example: Unix directory

Example: Expression Trees
more generally: syntax trees

- leaves are operands
- internal nodes are operators
- can represent entire program as a tree
Tree traversal

- Tree traversal: operation that converts the values in a tree into a list
 - Often the list is output
- Pre-order traversal
 - Print the data from the root node
 - Do a pre-order traversal on first subtree
 - Do a pre-order traversal on second subtree
 - Do a preorder traversal on last subtree

This is recursive. What’s the base case?

Preorder traversal: Expression Tree

- print node value, process left tree, then right

Prefix notation

```
++a*b*c++d e f g
```

Postorder traversal: Expression Tree

- process left tree, then right, then node

Postfix notation

```
abc*+dec*fg*
```

Inorder traversal: Expression Tree

- if each node has 0 to 2 children, you can do inorder traversal
- process left tree, print node value, then process right tree

Infix notation

```
a + b * c + (d * e + f ) * g
```
Example: Unix directory traversal

<table>
<thead>
<tr>
<th>Preorder</th>
<th>Postorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr</td>
<td>ch1.r</td>
</tr>
<tr>
<td>mark</td>
<td>ch2.r</td>
</tr>
<tr>
<td>book</td>
<td>ch3.r</td>
</tr>
<tr>
<td>ch3.r</td>
<td>book</td>
</tr>
<tr>
<td>ch2.r</td>
<td>syl.r</td>
</tr>
<tr>
<td>ch1.r</td>
<td>syl.r</td>
</tr>
<tr>
<td>course</td>
<td>syl.r</td>
</tr>
<tr>
<td>cop3510</td>
<td>syl.r</td>
</tr>
<tr>
<td>fa1198</td>
<td>syl.r</td>
</tr>
<tr>
<td>syr.r</td>
<td>syl.r</td>
</tr>
<tr>
<td>sum.99</td>
<td>syl.r</td>
</tr>
<tr>
<td>junk*</td>
<td>alex*</td>
</tr>
<tr>
<td>junk</td>
<td>junk</td>
</tr>
<tr>
<td>work</td>
<td>mark</td>
</tr>
<tr>
<td>course</td>
<td>junk</td>
</tr>
<tr>
<td>cop3121</td>
<td>junk</td>
</tr>
<tr>
<td>fa1198</td>
<td>junk</td>
</tr>
<tr>
<td>grades</td>
<td>junk</td>
</tr>
<tr>
<td>prog1.r</td>
<td>junk</td>
</tr>
<tr>
<td>proj2.r</td>
<td>junk</td>
</tr>
<tr>
<td>prog1.r</td>
<td>mark</td>
</tr>
<tr>
<td>prog2.r</td>
<td>mark</td>
</tr>
<tr>
<td>proj2.r</td>
<td>mark</td>
</tr>
<tr>
<td>grades</td>
<td>junk</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Binary Trees

- **Binary Tree**: a tree in which no node can have more than two children.

- **height**: shortest: $\log_2(n)$ tallest: n

 - n is the number of nodes in the tree.

Binary Trees: implementation

- Structure with a data value, and a pointer to the left subtree and another to the right subtree.

```
struct TreeNode {
    Object data;       // the data
    BinaryNode *left;  // left subtree
    BinaryNode *right; // right subtree
};
```

- Like a linked list, but two “next” pointers.
- This structure can be used to represent any binary tree.

Binary Search Trees

- A special kind of binary tree
- A data structure used for efficient searching, insertion, and deletion.

- **Binary Search Tree property:**
 For every node X in the tree:
 - All the values in the **left** subtree are **smaller** than the value at X.
 - All the values in the **right** subtree are **larger** than the value at X.
- Not all binary trees are binary search trees
Binary Search Trees

- **A binary search tree**
- **Not a binary search tree**

- Maximum depth of a node: N
- Average depth of a node: $O(\log_2 N)$

Binary Search Trees

The same set of values may have multiple valid BSTs

- Inorder traversal of a BST shows the values in sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20

Binary Search Trees: operations

- `insert(x)`
- `remove(x)` (or delete)
- `isEmpty()` (returns bool)
- `makeEmpty()`
- `find(x)` (returns bool)
- `findMin()` (returns ItemType)
- `findMax()` (returns ItemType)
Recursive Algorithm:
- If we are searching for 15 we are done.
- If we are searching for a key < 15, then we should search in the left subtree.
- If we are searching for a key > 15, then we should search in the right subtree.

Example: search for 9
- compare 9 to 15, go left
- compare 9 to 6, go right
- compare 9 to 7 go right
- compare 9 to 13 go left
- compare 9 to 9: found

Pseudocode
Recursive

```cpp
bool find (ItemType x, TreeNode t) {
    if (isEmpty(t))
        return false

    if (x < value(t))
        return find (x, left(t))

    if (x > value(t))
        return find (x, right(t))

    return true // x == value(t)
}
```

Smallest element is found by always taking the left branch.

Pseudocode
Recursive

```cpp
ItemType findMin (TreeNode t) {
    assert (!isEmpty(t))

    if (isEmpty(left(t)))
        return value(t)

    return findMin (left(t))
}
```
BST: insert(x)

- Algorithm is similar to find(x)
- If x is found, do nothing (no duplicates in tree)
- If x is not found, add a new node with x in place of the last empty subtree that was searched.

![BST Diagram](image)

Inserting 13:

![Inserting 13](image)

Pseudocode

```c++
bool insert (ItemType x, TreeNode t) {
  if (isEmpty(t))
    make t's parent point to new TreeNode(x)
  else if (x < value(t))
    insert (x, left(t))
  else if (x > value(t))
    insert (x, right(t))
  //else x == value(t), do nothing, no duplicates
}
```

Recursive

- Pass the node pointer by reference:
- Append x to end of a singly linked list:

```c++
void List<T>::append (T x) {
  append(x, head);
}
```

```c++
void List<T>::append (T x, Node *& p) {
  if (p == NULL) {
    p = new Node();
    p->data = x;
    p->next = NULL;
  }
  else
    append (x, p->next);
}
```

Linked List example:

- Pass the node pointer by reference:
- Append x to end of a singly linked list:

BST: remove(x)

- Algorithm is starts with finding(x)
- If x is not found, do nothing
- If x is not found, remove node carefully.
 - Must remain a binary search tree (smallers on left, biggers on right).
BST: remove(x)

- **Case 1: Node is a leaf**
 - Can be removed without violating BST property
- **Case 2: Node has one child**
 - Make parent pointer bypass the Node and point to child

Template Code

```cpp
template<class ItemType>
void BST_3358 <ItemType>::removeMin(TreeNode*& t) {
    assert (t);   //t must not be empty
    if (t->left) {
        removeMin(t->left);
    } else {
        TreeNode *temp = t;
        t = t->right;   //it’s ok if this is null
        delete temp;
    }
}
```

Template Code

```cpp
template<class ItemType>
void BST_3358 <ItemType>::deleteItem(TreeNode*& t, const ItemType& newItem) {
    if (t == NULL)  return;          // not found
    else if (newItem < t->data)      // search left
        deleteItem(t->left, newItem);
    else if (newItem > t->data)      // search right
        deleteItem(t->right, newItem);
    else { // newItem == t->data: remove t
        if (t->left && t->right) {   // two children
            t->data = findMin(t->right);
            removeMin(t->right);
        } else {                     // one or zero children: skip over t
            TreeNode *temp = t;
            if (t->left)
                t = t->left;
            else
                t = t->right;        //ok if this is null
            delete temp;
        }
    }
}
```

Binary Search Trees:
runtime analyses

- Cost of each operation is proportional to the number of nodes accessed
- depth of the node (height of the tree)
- best case: $O(\log N)$ (balanced tree)
- worst case: $O(N)$ (tree is a list)
- average case: ??
 - Theorem: on average, the depth of a binary search tree node, assuming random insertion sequences, is $1.38 \log N$