Definitions of Search and Sort

- **Search**: find an item in an array, return the index to the item, or -1 if not found.
- **Sort**: rearrange the items in an array into some order (smallest to biggest, alphabetical order, etc.).
- There are various methods (algorithms) for carrying out these common tasks.
- Which ones are better? Why?

Linear Search

- Very simple method.
- Compare first element to target value, if not found then compare second element to target value . . .
- Repeat until: target value is found (return its index) or we run out of items (return -1).

Linear Search in C++

```c++
int searchList (int list[], int numElems, int value) {
    int index=0;       //index to process array
    int position = -1; //position of value
    bool found = false; //flag, true when value is found
    while (index < numElems && !found) {
        if (list[index] == value) //found the value!
            {found = true; //set the flag
             position = index;  //record which item
            }
        index++; //increment loop index
    }
    return position;
}
```

What if we don’t use found?
Program using Linear Search

```cpp
#include <iostream>
using namespace std;

int searchList(int[], int, int);

int main() {
    const int SIZE=5;
    int idNums[SIZE] = {871, 750, 988, 100, 822};
    int results, id;
    cout << "Enter the employee ID to search for: ";
    cin >> id;
    results = searchList(idNums, SIZE, id);
    if (results == -1) {
        cout << "That id number is not registered\n";
    } else {
        cout << "That id number is found at location ";
        cout << results+1 << endl;
    }
    return 0;
}
```

Evaluating the Algorithm

- Is it efficient? Does it do any unnecessary work?
- We measure efficiency of algorithms in terms of number of main steps required to finish.
- For search algorithms, the main step is comparing an array element to the target value.
- Number of steps depends on:
 - size of input array
 - whether or not value is in array
 - where the value is in the array

Efficiency of Linear Search

<table>
<thead>
<tr>
<th></th>
<th>N=50,000</th>
<th>In terms of N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Average Case</td>
<td>25,000</td>
<td>N/2</td>
</tr>
<tr>
<td>Worst Case</td>
<td>50,000</td>
<td>N</td>
</tr>
</tbody>
</table>

*N is the number of elements in the array

Note: if we search for items not in the array, the average case will increase.

Binary Search

- Works only for SORTED arrays
- Divide and conquer style algorithm
- Compare target value to middle element in list.
 - if equal, then return its index
 - if less than middle element, search in first half of list (repeat)
 - if greater than middle element, search in last half of list (repeat)
- If current search list is narrowed down to 0 elements, return -1
Binary Search Algorithm

- The algorithm described in pseudocode:
 while (number of items in list >= 1) and (target not found)
 if (item at middle position is equal to target)
 target is found!
 location = middle position
 else
 if (target < middle item) (narrow search list)
 list = lower half of list
 else
 list = upper half of list
 end while
 if target not found, location = -1

Binary Search in C++

```c++
int binarySearch (int array[], int numElems, int value) {
    int first = 0,            //index to first elem
        last = numElems - 1,  //index to last elem
        middle,               //index of middle elem
        position = -1;        //index of target value
    bool found = false;       //flag
    while (first <= last && !found) {
        middle = (first + last) /2;    //calculate midpoint
        if (array[middle] == value) {
            found = true;
            position = middle;
        } else if (array[middle] > value) {
            last = middle - 1;           //search lower half
        } else {                        //search upper half
            first = middle + 1;
        }
    }
    return position;
}
```

What if first + last is odd?
What if first=last?

What if first + last is odd?
What if first=last?

Program using Binary Search

```c++
#include <iostream>
using namespace std;

int binarySearch(int array[], int numElems, int value) {
    int first = 0,            //index to first elem
        last = numElems - 1,  //index to last elem
        middle,               //index of middle elem
        position = -1;        //index of target value
    bool found = false;       //flag
    while (first <= last && !found) {
        middle = (first + last) /2;    //calculate midpoint
        if (array[middle] == value) {
            found = true;
            position = middle;
        } else if (array[middle] > value) {
            last = middle - 1;           //search lower half
        } else {                        //search upper half
            first = middle + 1;
        }
    }
    return position;
}
```

How is this program different from the one on slide 5?

How is this program different from the one on slide 5?

Binary Search

Example Exam Question!

The target of your search is 42. Given the following list of integers, record the values of first, last, and middle during a binary search. Assume the following numbers are in an array.

```
1  7  8  14  20  42  55  67  78  101  112  122 170 179 190
```

Repeat the exercise with a target of 82

<table>
<thead>
<tr>
<th>first</th>
<th>0 0 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>last</td>
<td>14 6 6</td>
</tr>
<tr>
<td>middle</td>
<td>7 3 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>first</th>
<th>0 8 8 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>last</td>
<td>14 14 10 8 8</td>
</tr>
<tr>
<td>middle</td>
<td>7 11 9 8</td>
</tr>
</tbody>
</table>

Note: these are the indexes, not the values in the array

Program using Binary Search

```
#include <iostream>
using namespace std;

int binarySearch(int array[], int numElems, int value) {
    int first = 0,            //index to first elem
        last = numElems - 1,  //index to last elem
        middle,               //index of middle elem
        position = -1;        //index of target value
    bool found = false;       //flag
    while (first <= last && !found) {
        middle = (first + last) /2;    //calculate midpoint
        if (array[middle] == value) {
            found = true;
            position = middle;
        } else if (array[middle] > value) {
            last = middle - 1;           //search lower half
        } else {                        //search upper half
            first = middle + 1;
        }
    }
    return position;
}
```

How is this program different from the one on slide 5?

How is this program different from the one on slide 5?
Efficiency of Binary Search

Calculate worst case for N=1024

<table>
<thead>
<tr>
<th>Items left to search</th>
<th>Comparisons so far</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>2</td>
</tr>
<tr>
<td>128</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

1024 = 2^{10} \iff \log_2 1024 = 10

Items left to search

Comparisons so far

Goal: calculate this value from N

Efficiency of Binary Search

If N is the number of elements in the array, how many comparisons (steps)?

<table>
<thead>
<tr>
<th>N=1024 = 2^{10} \iff \log_2 N = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 2^{steps} \iff \log_2 N = steps</td>
</tr>
</tbody>
</table>

N=50,000

<table>
<thead>
<tr>
<th></th>
<th>Best Case:</th>
<th>Worst Case:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>16 \log_2 N</td>
</tr>
</tbody>
</table>

Rounded up to next whole number

Is \(\log_2 N \) better than N?

Is binary search better than linear search?

Is this really a fair comparison?

Compare values of N/2, N, and \(\log_2 N \) as N increases:

<table>
<thead>
<tr>
<th>N</th>
<th>N/2</th>
<th>(\log_2 N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>5.6</td>
</tr>
<tr>
<td>500</td>
<td>250</td>
<td>9.0</td>
</tr>
<tr>
<td>5,000</td>
<td>2,500</td>
<td>12.3</td>
</tr>
<tr>
<td>50,000</td>
<td>25,000</td>
<td>15.6</td>
</tr>
</tbody>
</table>

N and N/2 are growing much faster than \(\log N \)!

Slower growing is more efficient (fewer steps).

Classifications of (math) functions

<table>
<thead>
<tr>
<th>Classification</th>
<th>Examples</th>
<th>Big Oh Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>(f(x)=b)</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>(f(x) = \log_b(x))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>Linear</td>
<td>(f(x) = ax + b)</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Linearithmic</td>
<td>(f(x) = x \log_b(x))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>Quadratic</td>
<td>(f(x) = ax^2 + bx + c)</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Exponential</td>
<td>(f(x) = b^x)</td>
<td>(O(2^n))</td>
</tr>
</tbody>
</table>

- Last column is “big Oh notation”, used in CS.
- It ignores all but dominant term, constant factors.
Comparing growth of functions

Efficiency of Algorithms

- To classify efficiency of an algorithm:
 - Express “time” (using number of main steps or comparisons), as a function of input size
 - Determine which classification the function fits into.

- Nearer to the top of the chart is slower growth, and more efficient (constant is better than logarithmic, etc.)

8.3 Sorting Algorithms

- Sort: rearrange the items in an array into ascending or descending order.
- Selection Sort
- Bubble Sort

Why is sorting important?

- Searching in a sorted list is much easier than searching in an unsorted list.
- Especially for people
 - dictionary entries
 - phone book
 - card catalog in library
 - bank statement: transactions in date order
- Most of the data displayed by computers is sorted.
Selection Sort

- There is a pass for each position (0..size-1)
- On each pass, the smallest (minimum) element in the rest of the list is exchanged (swapped) with element at the current position.
- The first part of the list (the part that is already processed) is always sorted
- Each pass increases the size of the sorted portion.

Selection Sort: Pass One

```
values [ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
```

UNSORTED

```
36
24
10
6
12
```

Selection Sort: End Pass One

```
values [ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
```

```
6
24
10
36
12
```

UNSORTED

SORTED

Selection Sort: Pass Two

```
values [ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
```

```
6
24
10
36
12
```

UNSORTED

SORTED
Selection Sort: End Pass Two

Selection Sort: Pass Three

Selection Sort: End Pass Three

Selection Sort: Pass Four
Selection Sort: End Pass Four

values [0]
6
[1]
10
[2]
12
[3]
24
[4]
36

Selection Sort in C++

// Returns the index of the smallest element, starting at start
int findIndexOfMin (int array[], int size, int start) {
 int minIndex = start;
 for (int i = start+1; i < size; i++) {
 if (array[i] < array[minIndex]) {
 minIndex = i;
 }
 }
 return minIndex;
}

// Sorts an array, using findIndexOfMin
void selectionSort (int array[], int size) {
 int temp;
 int minIndex;
 for (int index = 0; index < (size -1); index++) {
 minIndex = findIndexOfMin(array, size, index);
 //swap
 temp = array[minIndex];
 array[minIndex] = array[index];
 array[index] = temp;
 }
}

Program using Selection Sort

#include <iostream>
using namespace std;

int findIndexOfMin (int [], int, int);
void selectionSort(int [], int);
void showArray(int [], int);

int main() {
 int values[6] = {7, 2, 3, 8, 9, 1};
 cout << "The unsorted values are: \n";
 showArray (values, 6);
 selectionSort (values, 6);
 cout << "The sorted values are: \n";
 showArray(values, 6);
}

void showArray (int array[], int size) {
 for (int i=0; i<size; i++)
 cout << array[i] << " " ;
 cout << endl;
}

Output:
The unsorted values are: 7 2 3 8 9 1
The sorted values are: 1 2 3 7 8 9

Efficiency of Selection Sort

- N is the number of elements in the list
- Outer loop (in selectionSort) executes N-1 times
- Inner loop (in minIndex) executes N-1, then N-2, then N-3, ... then once.
- Total number of comparisons (in inner loop):
 \[(N-1) + (N-2) + \ldots + 2 + 1 = \text{sum of 1 to N-1}\]
 Note: \[N + (N-1) + (N-2) + \ldots + 2 + 1 = N(N+1)/2\]
 Subtract N from each side:
 \[(N-1) + (N-2) + \ldots + 2 + 1 = N(N+1)/2 - N\]
 \[= (N^2+N-2N)/2\]
 \[= N^2/2 - N/2\]
 \[\text{O}(N^2)\]
The Bubble Sort

- On each pass:
 - Compare first two elements. If the first is bigger, they exchange places (swap).
 - Compare second and third elements. If second is bigger, exchange them.
 - Repeat until last two elements of the list are compared.
- Repeat this process until a pass completes with no exchanges.

Bubble sort Example

- 7 2 3 8 9 1
 - 7 > 2, swap
- 2 7 3 8 9 1
 - 7 > 3, swap
- 2 3 7 8 9 1
 - !(7 > 8), no swap
- 2 3 7 8 9 1
 - !(8 > 9), no swap
- 2 3 7 8 9 1
 - 9 > 1, swap
- 2 3 7 8 1 9
 - finished pass 1, did 3 swaps

Note: largest element is in last position

Bubble sort Example

- 2 3 7 8 1 9
 - 2<3<7<8, no swap, !(8<1), swap
- 2 3 7 1 8 9
 - (8<9) no swap
 - finished pass 2, did one swap
 - 2 largest elements in last 2 positions
- 2 3 7 1 8 9
 - 2<3<7, no swap, !(7<1), swap
- 2 3 1 7 8 9
 - 7<8<9, no swap
 - finished pass 3, did one swap
 - 3 largest elements in last 3 positions
- 2 3 1 7 8 9
 - 2<3<7<8<9, no swaps
 - finished pass 6, no swaps, list is sorted!
Bubble sort
how does it work?

- At the end of the first pass, the largest element is moved to the end (it’s bigger than all its neighbors)
- At the end of the second pass, the second largest element is moved to just before the last element.
- The back end (tail) of the list remains sorted.
- Each pass increases the size of the sorted portion.
- No exchanges implies each element is smaller than its next neighbor (so the list is sorted).

Bubble Sort in C++

```c++
void bubbleSort (int array[], int size) {
    bool swap;
    int temp;
    do {
        swap = false;
        for (int i = 0; i < (size-1); i++) {
            if (array [i] > array[i+1]) {
                temp = array[i];
                array[i] = array[i+1];
                array[i+1] = temp;
                swap = true;
            }
        }
    } while (swap);
}
```

Program using bubble sort

```c++
#include <iostream>
using namespace std;

void bubbleSort(int array[], int);
void showArray(int array[], int);

int main() {
    int values[6] = {7, 2, 3, 8, 9, 1};
    cout << "The unsorted values are: \n";
    showArray(values, 6);
    bubbleSort(values, 6);
    cout << "The sorted values are: \n";
    showArray(values, 6);
}

void showArray (int array[], int size) {
    for (int i=0; i<size; i++)
        cout << array[i] << " " ;
    cout << endl;
}
```

Output:
The unsorted values are: 7 2 3 8 9 1
The sorted values are: 1 2 3 7 8 9

Efficiency of Bubble Sort

- Each pass makes N-1 comparisons
- There will be at most N passes
- So worst case it’s: \((N-1)^2 \cdot N = N^2 - N\) \(O(N^2)\)
- If you change the algorithm to look at only the unsorted part of the array in each pass, it’s exactly like the selection sort:
 \((N-1) + (N-2) + \ldots + 2 + 1 = N^2/2 - N/2\) \(O(N^2)\)