Analysis of Algorithms
An Introduction

CS 3358
Summer II 2013
Jill Seaman

Note: in this lecture “function” almost always refers to a mathematical function, as in f(x) = x+101

Sections 6.1, 6.2, 6.4 (optional), 6.6 (not 6.6.3)

Algorithms

• An algorithm is a clearly specified set of instructions a computer follows to solve a problem.

• An algorithm should be
 - correct
 - efficient: not use too much time or space

• Algorithm analysis: determining how much time and space a given algorithm will consume.

Algorithms

• Note that two very different algorithms can solve the same problem
 - bubble sort vs. quicksort
 - List insert in an array-based implementation vs. a linked-list-based implementation.

• How do we know which is faster (more efficient in time)?

• Why not just run both on same data and compare?

Algorithms

• Could measure the time each one takes to execute, but that is subject to various external factors
 - multitasking operating system
 - speed of computer
 - language solution is written in (compiler)

• Need a way to quantify the efficiency of an algorithm independently of execution platform, language, or compiler
Estimating execution time

- The amount of time it takes an algorithm to execute is a function of the input size.
- We use the number of statements executed (given a certain input size) as an approximation of the execution time.
- Count up statements executed for a program or algorithm as a function of the amount of data
 - For a list of length N, it may require executing $3N^2+2N+125$ statements to sort it using a given algorithm.

Counting statements

- Each single statement (assignment, output) counts as 1 statement
- A boolean expression (in an if stmt or loop) is 1 statement
- A function call is equal to the number of statements executed by the function.
- A loop is basically the number of times the loop executes times the number of statements executed in the loop.
 - usually counted in terms of N, the input size.

Counting statements example

```c
int total(int[] values, int numValues)
{
    int result = 0;
    for(int i = 0; i < numValues; i++)
    {
        result += values[i];
    }
    return result;
}
```

- What does N (input size) represent in this case?
 - the number of values in the array (==numValues)
- Tally up the statement count:
 - `int result = 0;` (1) `result += values[i];` (N)
 - `int i=0;` (1) `return result;` (1)
 - `i < numValues` (N+1)
 - `i++;` (N)
 - Total = $3N + 4$

Comparing functions

- Is $3N+4$ good? Is it better (less) than
 - $5N+5$?
 - $N+1,000$?
 - $N^2 + N + 2$?
 - Hard to say without graphing them.
- Even then, are the differences significant?
Comparing functions

- When comparing these functions in algorithm analysis
 - We are concerned with very large values of N.
 - We tend to ignore all but the “dominant” term.

At large values of N, 3N dominates the 4 in 3N+4

- We also tend to ignore the constant factor (3).
- We want to know which function is growing faster (getting bigger for bigger values of N).

Function classifications

- Constant \(f(x)=b \) \(O(1) \)
- Logarithmic \(f(x)=\log_b(x) \) \(O(\log n) \)
- Linear \(f(x)=ax+b \) \(O(n) \)
- Linearithmic \(f(x)=x \log_b(x) \) \(O(n \log n) \)
- Quadratic \(f(x)=ax^2+bx+c \) \(O(n^2) \)
- Exponential \(f(x)=b^x \) \(O(2^n) \)

Last column is “big Oh” notation

Comparing functions

- For a given function expressing the time it takes to execute a given algorithm in terms of N,
 - we ignore all but the dominant term and put it in one of the function classifications.

- Which classifications are more efficient?
 - The ones that grow more slowly.

Comparing functions

- Graph 1

We want small Time value for large N values

Graph 1

<table>
<thead>
<tr>
<th>Data size (N)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>256</td>
<td>512</td>
</tr>
</tbody>
</table>
Comparing functions

- **Graph 2**

![Graph showing typical analytic functions]

Comparing functions

- Assume N is 100,000, processing speed is 1,000,000,000 operations per second

<table>
<thead>
<tr>
<th>Function</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^N</td>
<td>3.2×10^{10} years</td>
</tr>
<tr>
<td>N^4</td>
<td>3371 years</td>
</tr>
<tr>
<td>N^2</td>
<td>11.6 days</td>
</tr>
<tr>
<td>N</td>
<td>10 seconds</td>
</tr>
<tr>
<td>$\log N$</td>
<td>0.0017 seconds</td>
</tr>
<tr>
<td>square root of N</td>
<td>3.2×10^{-7} seconds</td>
</tr>
<tr>
<td>$\log N$</td>
<td>1.2×10^{-6} seconds</td>
</tr>
</tbody>
</table>

Formal Definition of Big O

"Order F of N"

- $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N \geq N_0$
 - N is the size of the data set the algorithm works on
 - $T(N)$ is the function that characterizes the actual running time of the algorithm (like $3N+4$)
 - $F(N)$ is a function that characterizes an upper bounds on $T(N)$. It is a limit on the running time of the algorithm. (The typical Big O functions)
 - c and N_0 are constants. We pick them to make the definition work.

Example using definition

- Given $T(N) = 3N + 4$, prove it is $O(N)$.
 - $F(N)$ in the definition is N
 - We need to choose constants c and N_0 to make $T(N) \leq cF(N)$ when $N \geq N_0$ true.
 - Lets try $c = 4$ and $N_0 = 5$.
 - Graph on next slide shows: $3N+4$ is less than $4N$ whenever N is bigger than 5
Demonstrating 3N+4 is $O(N)$

- **N** horizontal axis: N, number of elements in data set
- **T(N)** vertical axis: execution time, actual function of time.
- **F(N)**, approximate function of time. In this case $3N + 4$
- $c \cdot F(N)$, in this case, $c = 4$, $c \cdot F(N) = 4N$
- $N_o = 5$

Best, Average, Worst case analyses

- **Best case**: fewest possible statements executed
 - example: linear search for first element in list.
- **Average case**: number of statements executed for most cases of input, or normal cases
 - example: linear search for element in middle of list
- **Worst case**: maximum number of statements that could be executed
 - example: linear search for last element in list, or an element not in list.

Because data values may affect execution time.

Example 1:

```cpp
bool findNum(double[] values, int numValues, double num) {
    for(int i = 0; i < numValues; i++)
        if(values[i] == num)
            return true;
    return false;
}
```

- **T(N)** is $O(F(N))$ for what function F?
 - best case?
 - average case?
 - worst case?

Example 2:

```cpp
Matrix Matrix::add(Matrix rhs) {
    Matrix sum = new Matrix(numRows(), numCols(), 0);
    for(int row = 0; row < numRows(); row++)
        for(int col = 0; col < numCols(); col++)
    return sum;
}
```

- **T(N)** is $O(F(N))$ for what function F?
Example 3:

```java
public void selectionSort(double[] data, int numValues)
{
    int n = numValues;
    int min;
    double temp;
    for(int i = 0; i < n; i++)
    {
        min = i;
        for(int j = i+1; j < n; j++)
            if(data[j] < data[min])
                min = j;
        temp = data[i];
        data[i] = data[min];
        data[min] = temp;
    // end of outer loop, i
}

Note: \(1+2+3+\ldots+N = \frac{N(N+1)}{2}\)
```

- T(N) is O(F(N)) for what function F?

Example 4:

```java
public int foo(int[] list, int length){
    int total = 0;
    for(int i = 0; i < length; i++){
        total += countDups(list[i], list);
    }
    return total;
}
```

- T(N) is O(F(N)) for what function F?

Example 5:

- Insert (and remove) for List_3358
 - implemented using arrays (in class: see below)
 - implemented using linked lists
- These operations are O(__) ?

```cpp
void List_3358::remove() {
    assert(!atEOL() && !isEmpty());
    for (int i=cursor; i < currentSize-1; i++)
    {
        values[i] = values[i+1];
        currentSize--;
    }
    if (isEmpty())
        cursor = EOL;
}
```