Heaps
Chapter 21

CS 3358
Summer I 2012
Jill Seaman

Binary heap data structure

- A binary heap is a special kind of binary tree
 - has a restricted structure (must be complete)
 - has an ordering property (parent value is smaller than child values)
 - NOT a Binary Search Tree!
- Used in the following applications
 - Priority queue implementation: supports enqueue and deleteMin operations in $O(\log N)$
 - Heap sort: another $O(N \log N)$ sorting algorithm.

Binary Heap:
structure property

- **Complete binary tree**: a tree that is completely filled
 - every level except the last is completely filled.
 - the bottom level is filled left to right (the leaves are as far left as possible).

Complete Binary Trees

- A complete binary tree can be easily stored in an array
 - place the root in position 1 (for convenience)
Complete Binary Trees
Properties

- The height of a complete binary tree is floor(log₂ N) (floor = biggest int less than)

- In the array representation:
 - put root at location 1
 - use an int variable (size) to store number of nodes
 - for a node at position i:
 - left child at position 2i (if 2i <= size, else i is leaf)
 - right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
 - parent is in position floor(i/2) (or use integer division)

Binary Heap: ordering property

- In a heap, if X is a parent of Y, value(X) is less than or equal to value(Y).
 - the minimum value of the heap is always at the root.
 - findMin() is O(1)

Heap: insert(x)

- First: add a node to tree.
 - must be placed at next available location, size+1, in order to maintain a complete tree.

- Next: maintain the ordering property:
 - if x is greater than its parent: done
 - else swap with parent, repeat

- Called “percolate up” or “reheap up”

- preserves ordering property

- O(log n)
Heap: deleteMin()

• Minimum is at the root, removing it leaves a hole.
 - The last element in the tree must be relocated.
• First: move last element up to the root
• Next: maintain the ordering property, start with root:
 - if both children are greater than the parent: done
 - otherwise, swap the smaller of the two children with the parent, repeat
• Called “percolate down” or “reheap down”
• preserves ordering property
• O(log n)

Heap: buildHeap()

• buildHeap takes a tree that does not have heap order and establishes it.
• The algorithm works bottom-up:
 - when processing a given node, its two children will already be in heap order.
 - then we can use percolate down to put the current node in the right place, and preserve the heap order property.
• No need to apply to leaves.
• Turns out this algorithm is O(n) (see book for proof)
• n inserts using insert(x) would be O(n log n)
Heap: buildHeap()

Heapsort

- Using a heap to sort a list:
 1. insert every item into a binary heap
 2. extract every item by calling deleteMin N times.
- Can make it slightly more efficient by using buildHeap on the unsorted vector instead of using insert N times.
- Runtime Analysis: $O(N \log N)$
 - step 1 is $O(N)$ if you use buildHeap
 - step 2: deleteMin is $O(\log N)$, and it's done N times, so it's $O(N \log N)$, and dominates first part.