What is sorting?

- Sort: rearrange the items in a list into ascending or descending order
 - numerical order
 - alphabetical order
 - etc.

55 112 78 14 20 179 42 67 190 7 101 1 122 170 8
1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

Why is sorting important?

- Searching in a sorted list is much easier than searching in an unsorted list.
- Especially for people
 - dictionary entries
 - phone book
 - card catalog in library
 - bank statement: transactions in date order
- Most of the data displayed by computers is sorted.

Sorting

- Sorting is one of the most intensively studied operations in computer science
- There are many different sorting algorithms
- The run-time analyses of each algorithm are well-known.
Sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort
- Merge sort
- Quicksort
- Heap sort (later, when we talk about heaps)

Selection sort

- There is a pass for each position (0..size-1)
- On each pass, the smallest (minimum) element in the rest of the list is exchanged (swapped) with element at the current position.
- The first part of the list (already processed) is always sorted
- Each pass increases the size of the sorted portion.
Selection Sort: Pass Two

Selection Sort: End Pass Two

Selection Sort: Pass Three

Selection Sort: End Pass Three
Selection Sort: Pass Four

values [0] 6
[1] 10
[2] 12
[3] 36
[4] 24

Selection Sort: End Pass Four

values [0] 6
[1] 10
[2] 12
[3] 24
[4] 36

Selection sort: code

```cpp
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
    int minIndex = start;
    for (int i = start+1; i < size; i++)
        if (values[i] < values[minIndex])
            minIndex = i;
    return minIndex;
}

template<class ItemType>
void selectionSort (ItemType values[], int size) {
    int min;
    for (int index = 0; index < (size -1); index++) {
        min = minIndex(values, SIZE, index);
        swap(values[min],values[index]);
    }
}
```

template <class T> void swap (T & a, T & b); is in the <algorithm> library

Selection sort: runtime analysis

- N is the number of elements in the list
- Outer loop (in selectionSort) executes N times
- Inner loop (in minIndex) executes N-1, then N-2, then N-3, ... then once.
- Total number of comparisons (in inner loop):
 \[(N-1) + (N-2) + \ldots + 2 + 1\]

Note: \[N + (N-1) + (N-2) + \ldots + 2 + 1 \equiv \frac{N(N+1)}{2}\]

\[= \frac{N^2}{2} + \frac{N}{2}\]

Subtract N from both sides:

\[(N-1) + (N-2) + \ldots + 2 + 1 = \frac{N^2}{2} + \frac{N}{2} - N\]

\[= \frac{N^2}{2} - \frac{N}{2}\]

\[O(N^2)\]
Insertion sort

- There is a pass for each position (0..size-1)
- The front of the list remains sorted.
- On each pass, the next element is placed in its proper place among the already sorted elements.
- Like playing a card game, if you keep your hand sorted, when you draw a new card, you put it in the proper place in your hand.
- Each pass increases the size of the sorted portion.

Insertion Sort: Pass One

Insertion Sort: Pass Two

Insertion Sort: Pass Three
Insertion sort: code

```cpp
template<class ItemType>
void insertionSort (ItemType a[], int size) {
    for (int index = 0; index < size; index++) {
        ItemType tmp = a[index]; // next element
        int j = index;           // start from the end
        // find tmp's place, AND shift bigger elements up
        while (j > 0 && tmp < a[j-1]) {
            a[j] = a[j-1]; // shift
            j--;
        }
        a[j] = tmp; // put tmp in its place
    }
}
```

Insertion sort: runtime analysis

- Very similar to Selection sort
- Total number of comparisons (in inner loop):
 - At most j+1, which is 1, then 2, then 3 ... up to N
- So it's \(N + (N-1) + (N-2) + \ldots + 2 + 1 = \frac{N(N+1)}{2} \) \(\mathcal{O}(N^2) \)
Bubble sort

- On each pass:
 - Compare first two elements. If the first is bigger, they exchange places (swap).
 - Compare second and third elements. If second is bigger, exchange them.
 - Repeat until last two elements of the list are compared.
- Repeat this process until a pass completes with no exchanges

Bubble sort how does it work?

- At the end of the first pass, the largest element is moved to the end (it's bigger than all its neighbors)
- At the end of the second pass, the second largest element is moved to just before the last element.
- The back end (tail) of the list remains sorted.
- Each pass increases the size of the sorted portion.
- No exchanges implies each element is smaller than its next neighbor (so the list is sorted).

Bubble sort Example

- 7 2 3 8 9 1 7 > 2, swap
- 2 7 3 8 9 1 7 > 3, swap
- 2 3 7 8 9 1 !(7 > 8), no swap
- 2 3 7 8 9 1 !(8 > 9), no swap
- 2 3 7 8 9 1 9 > 1, swap
- 2 3 7 8 1 9 finished pass 1, did 3 swaps

Note: largest element is in last position

Bubble sort Example

- 2 3 7 8 1 9 2<3<7<8, no swap, !(8<1), swap
- 2 3 7 1 8 9 (8<9) no swap
- finished pass 2, did one swap

2 largest elements in last 2 positions

- 2 3 7 1 8 9 2<3<7, no swap, !(7<1), swap
- 2 3 1 7 8 9 7<8<9, no swap
- finished pass 3, did one swap

3 largest elements in last 3 positions
Bubble sort

Example

- \(2\ 3\ 1\ 7\ 8\ 9\) \(2<3, \!(3<1)\) swap, \(3<7<8<9\)
- \(2\ 1\ 3\ 7\ 8\ 9\) finished pass 4, did one swap
- \(2\ 1\ 3\ 7\ 8\ 9\) \(!\!(2<1)\) swap, \(2<3<7<8<9\)
- \(1\ 2\ 3\ 7\ 8\ 9\) finished pass 5, did one swap
- \(1\ 2\ 3\ 7\ 8\ 9\) \(1<2<3<7<8<9\), no swaps
- finished pass 6, no swaps, list is sorted!

Bubble sort: code

```cpp
template<class ItemType>
void bubbleSort (ItemType a[], int size) {
    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
            if (a[i] > a[i+1]) {
                swap(a[i],a[i+1]);
                swapped = true;
            }
        }
    } while (swapped);
}
```

Bubble sort: runtime analysis

- Each pass makes \(N-1\) comparisons
- There will be at most \(N\) passes
 - one to move the right element into each position
- So worst case it’s: \(\binom{(N-1)N}{O(N^2)}\)
- What is the best case?
- Are there any sorting algorithms better than \(O(N^2)\)?)

Merge sort

- Divide and conquer!
- 2 half-sized lists sorted recursively
- the algorithm:
 - if list size is 0 or 1, return (base case) otherwise:
 - recursively sort first half and then second half of list.
 - merge the two sorted halves into one sorted list.
Merge sort

Example

- **Recursively** divide list in half:
 - call `mergeSort` recursively on each one.

```
5 2 4 6 1 3 2 6
```

```
5 2 4 6
1 3 2 6

5 2 4 6
1 3 2 6
```

Each of these are sorted (base case length = 1)

Merge sort

Merging

- **How to merge 2 (adjacent) lists:**

<table>
<thead>
<tr>
<th>values</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>middle</td>
</tr>
<tr>
<td>1 13 24 26 2 15 27 38</td>
<td></td>
</tr>
</tbody>
</table>

```
i 13 24 26 2 15 27 38
```

```
j 13 24 26 2 15 27 38
```

```
k 1 13 24 26 2 15 27 38
```

Compare values[i] to values[j], copy smaller to temp[k]

Merge sort

Example

- **Calls to merge, starting from the bottom:**

```
initial sequence
5 2 4 6 1 3 2 6
```

```
merge
merge
merge
merge
merge
```

```
sorted sequence
1 2 3 4 5 6 6
```

Merge sort

Merging

- **Continued:**

```
values
1 13 24 26 2 15 27 38
```

```
temp
1 2 13 15
```

```
i 13 24 26 2 15 27 38
```

```
j 13 24 26 2 15 27 38
```

```
k 1 2 13 15
```

Now `i==middle+1`

```
values
1 13 24 26 2 15 27 38
```

```
temp
1 2 13 15 24
```

```
i 13 24 26 2 15 27 38
```

```
j 13 24 26 2 15 27 38
```

```
k 1 2 13 15 24
```

Now `j==last+1`

```
values
1 13 24 26 2 15 27 38
```

```
temp
1 2 13 15 24 26
```

```
i 13 24 26 2 15 27 38
```

```
j 13 24 26 2 15 27 38
```

```
k 1 2 13 15 24 26
```

Now `j==last+1`

```
values
1 13 24 26 2 15 27 38
```

```
temp
1 2 13 15 24 26 27
```

```
i 13 24 26 2 15 27 38
```

```
j 13 24 26 2 15 27 38
```

```
k 1 2 13 15 24 26 27
```

Now `j==last+1`

```
values
1 13 24 26 2 15 27 38
```

```
temp
1 2 13 15 24 26 27 38
```

```
i 13 24 26 2 15 27 38
```

```
j 13 24 26 2 15 27 38
```

```
k 1 2 13 15 24 26 27 38
```

Copy temp to values
Merge sort: code

```cpp
template<class ItemType>
void mergeSortRec (ItemType values[], int first, int last) {
    if (first < last) {
        int middle = (first + last) / 2;
        mergeSortRec(values, first, middle);
        mergeSortRec(values, middle+1, last);
        merge(values, first, middle, last);
    }
}

template<class ItemType>
void mergeSort (ItemType values[], int size) {
    mergeSortRec(values, 0, size-1);
}
```

Merge sort: code: merge

```cpp
template<class ItemType>
void merge(ItemType values[], int first, int middle, int last) {
    ItemType tmp[last-first+1];  //temporary array
    int i=first;        //index for left
    int j=middle+1;     //index for right
    int k=0;            //index for tmp
    while (i<=middle && j<=last)   //merge, compare next elem from each array
        if (values[i] < values[j])
            tmp[k++] = values[i++];
        else
            tmp[k++] = values[j++];
    while (i<=middle)           //merge remaining elements from left, if any
        tmp[k++] = values[i++];
    while (j<=last)             //merge remaining elements from right, if any
        tmp[k++] = values[j++];
    for (int i = first; i <=last; i++) //copy from tmp array back &g values
        values[i] = tmp[i-first];
}
```

Merge sort: runtime analysis

- Let's start with a run-time analysis of merge
- Let's use M as the size of the final list
 - The merging requires M (or fewer) comparisons + copies
 - Copying from the temp array is M copies
 - So merge is $O(M)$

Merge sort: runtime analysis

- The array can be subdivided into halves $\log_2 N$ times (there are $\log_2 N$ levels in the graph)
- At each level in the graph,
 - merge is called on each sub-list
 - The total size of each sub-list added up is N
 - So at each level in the graph, the total execution time is $O(N)$.
- So $\log_2 N$ levels times $O(N)$ at each level: $O(N \log N)$
Merge sort

Runtime analysis

- O(N) work done at each level:

```
sorted sequence
N
1 2 2 3 4 5 6 6
merge
N
2 4 5 6
merge
N
2 5
merge
merge
N
5 2 4 6
merge
merge
merge
initial sequence
```

Merge sort: runtime analysis

- mergeSort has 2 recursive calls to itself.
- Why does it not have the exponential cost that the Fibonacci algorithm had?

Quicksort

- Another divide and conquer!
- 2 (hopefully) half-sized lists sorted recursively
- the algorithm:
 - If list size is 0 or 1, return. otherwise:
 - partition into two lists:
 - pick one element as the pivot
 - put all elements less than pivot in first half
 - put all elements greater than pivot in second half
 - recursively sort first half and then second half of list.
Quicksort: partitioning

- Goal: partition a sub-array A[start ... last] by rearranging the elements and returning the index of the pivot point p so that:
- the algorithm:
 - pick a pivot elem and swap with last elem
 - let i = first and j = last - 1

Quicksort: partitioning (continued):
- the algorithm (continued):
 - increment i while A[i] < pivot (A[last])
 - decrement j while A[j] > pivot (A[last])
QuickSort: partitioning

• the algorithm (continued):
 - When i and j have stopped,
 - if i < j: swap A[i] and A[j]

QuickSort: partitioning

• the algorithm (continued):
 - repeat until i and j have met or crossed (i >= j):
 - swap A[i] and pivot (A[last])
 - puts pivot in place
 - A[i] >= pivot (i stopped there, so A[i] >= pivot)
 - return i (the pivot index)

QuickSort: code

version 1

template<class ItemType>
void quickSort(ItemType values[], int first, int last) {
 if (first < last) {
 // at least two elems
 int pivotPoint;

 // partition and get the pivot point (the index)
 pivotPoint = partition(values, first, last);

 quickSort(values, first, pivotPoint - 1);
 quickSort(values, pivotPoint + 1, last);
 }
}

template<class ItemType>
void quickSort(ItemType values[], int size) {
 quickSort(values, 0, size-1);
}
Quicksort: runtime analysis

• Choice of pivot point dramatically affects running time.
 • Best Case
 - Pivot partitions the set into 2 equally sized subsets at each stage of recursion: $O(\log N)$ levels
 - Partitioning at each level is $O(N)$
 ◦ each element is compared to the pivot and maybe moved one time
 - $O(N \log N)$

 Worst Case
 - Pivot is always the smallest element, partitioning the set into one empty subset, and one of size N-1.
 - Partitioning at each level is N
 ◦ $T(N) = T(N-1) + N$ (time to sort N-1 plus N for partitioning)
 ◦ $T(N) = N + N-1 + \ldots + 2 + 1$ (from unwinding the above)
 ◦ $T(N) = N(N+1)/2$
 - $O(N^2)$

Moral of the story: it pays to pick a good pivot point

Quicksort: runtime analysis

• Average Case
 - Assume left side is equally likely to have a size of 0 or 1 or 2 or ... or N elements
 - Partitioning at each level is still N
 ◦ $T(N) = \text{average cost of one recursive call, over all subproblem sizes}$
 ◦ $T(N) = (T(0) + T(1) + \ldots + T(N-1))/N$ (divide by N to get avg)
 ◦ Cost for 2 recursive calls and one partitioning:
 ◦ $T(N) = N + 2^2((T(0) + T(1) + \ldots + T(N-1))/N)$
 ◦ Not a trivial proof . . . most of it is in the book.
 - $O(N \log N)$

Quicksort: Picking the pivot

• Goal: ensure the worst case doesn’t happen.
• Picking a pivot randomly is safe
 - but random number generation can be expensive
• Using the first element:
 - if the input is random, this is ok.
 - if the input is sorted, all elements are in right half worst case = $O(N^2)$
• Use the median value (the middle value in order):
 - perfectly divides into two even sides
 - but you have to sort the list to find the median.
Quicksort: Picking the pivot
Median of Three method

- Pivot is the median (middle value) of the first, last, and middle value in the list.

- This is an “estimate” of the real median
 - taking median of more than 3 is not worth the time

Median-of-Three partitioning:
- arrange the values at first, last and middle so that:
 - \(A[\text{first}] \leq A[\text{middle}] \leq A[\text{last}] \)
- swap pivot \(A[\text{middle}] \) with \(A[\text{last}-1] \)
- start with \(i = \text{first} + 1 \) and \(j = \text{last} - 2 \)
 - \(A[\text{first}] \) and \(A[\text{last}] \) are already in place
- use same algorithm as original partitioning

Quicksort: Small Arrays

- For very small arrays, quicksort does not perform as well as insertion sort
 - how small depends on many factors, such as the time spent making a recursive call, the compiler, etc

- Do not use quicksort recursively for small arrays
 - Instead, use a sorting algorithm that is efficient for small arrays, such as insertion sort
 - a cutoff between 5 and 20 is good.
 - Note: median of three partitioning requires at least 3 elements anyway
Quicksort: code
version 2

```
template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
    int pivotPoint;
    if (first + CUTOFF <= last) { // more than CUTOFF elems
        pivotPoint = partition(values, first, last);
        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    } else {
        insertionSort(values, first, last);
    }
}
```

```
template<class ItemType>
void quickSort (ItemType values[], int size) {
    quickSort(values, 0, size-1);
}
```

Quicksort: code
version 2

```
template<class ItemType>
int partition(ItemType values[], int first, int last) {
    //sort first, mid, last
    int mid = (first + last) / 2;
    if (values[mid] < values[first]) swap(values[mid], values[first]);
    if (values[last] < values[first]) swap(values[last], values[first]);
    if (values[last] < values[mid]) swap(values[last], values[mid]);
    ItemType pivotValue = values[mid]; // move pivot to last-1
    swap(values[last-1], values[mid]);
    int i=first+1,j=last-2; // do the partitioning
    while (i<j) {
        while (values[i] < pivotValue) {i++;}
        while (pivotValue < values[j]) {j--;}
        if (i < j) swap(values[i++], values[j--]);
    }
    swap(values[i], values[last-1]); // put pivot back in place
    return i;
}
```

Quicksort vs MergeSort

- Both run in O(n log n)
- Compared with Quicksort, Mergesort has fewer comparisons but more swapping (copying)
 - (not yet able to verify the following):
 - In Java, an element comparison is expensive but moving elements is cheap. Therefore, Mergesort is used in the standard Java library for generic sorting
 - In C++, copying objects can be expensive while comparing objects often is relatively cheap. Therefore, quicksort is the sorting routine commonly used in C++ libraries