Dynamic data structures

- **Linked Lists**
 - dynamic structure, grows and shrinks with data
 - most operations are linear time (O(N)).
- **Can we make a simple data structure that can do better?**
- **Trees**
 - dynamic structure, grows and shrinks with data
 - most operations are logarithmic time (O(log N)).

Tree: non-recursive definition

- **Tree**: set of nodes and directed edges
 - **root**: one node is distinguished as the root
 - Every node (except root) has exactly exactly one edge coming into it.
 - Every node can have any number of edges going out of it (zero or more).
- **Parent**: source node of directed edge
- **Child**: terminal node of directed edge
Tree: recursive definition

- **Tree:**
 - is empty or
 - consists of a root node and zero or more nonempty subtrees, with an edge from the root to each subtree.

Tree terms

- **Path:** sequence of (directed) edges
- **Length of path:** number of edges on the path
- **Depth of a node:** length of path from root to that node.
 - height of tree = height of root, depth of deepest leaf
 - leaves have height 0
 - root has depth 0

Example: Unix directory

Example: Expression Trees
more generally: syntax trees

- leaves are operands
- internal nodes are operators
- can represent entire program as a tree
Tree traversal

- Tree traversal: operation that converts the values in a tree into a list
 - Often the list is output
- Pre-order traversal
 - Print the data from the root node
 - Do a pre-order traversal on first subtree
 - Do a pre-order traversal on second subtree
 - Do a preorder traversal on last subtree

This is recursive. What's the base case?

Preorder traversal: Expression Tree

- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree
- Do a preorder traversal on last subtree

Postorder traversal: Expression Tree

- Process left tree, then right, then node
- Postfix notation (for arithmetic expressions)

Inorder traversal: Expression Tree

- If each node has 0 to 2 children, you can do inorder traversal
- Process left tree, print node value, then process right tree
- Infix notation (for arithmetic expressions)
Example: Unix directory traversal

<table>
<thead>
<tr>
<th>Preorder</th>
<th>Postorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>. /usr</td>
<td>. /usr</td>
</tr>
<tr>
<td></td>
<td>. /usr</td>
</tr>
</tbody>
</table>

Binary Trees

Binary Tree: a tree in which no node can have more than two children.

- height: shortest: \(\log_2(n) \) tallest: \(n \)

Binary Trees: implementation

- Structure with a data value, and a pointer to the left subtree and another to the right subtree.

```c
struct TreeNode {
    Object data;       // the data
    BinaryNode *left;  // left subtree
    BinaryNode *right; // right subtree
};
```

- Like a linked list, but two "next" pointers.
- This structure can be used to represent any binary tree.

Binary Search Trees

- A special kind of binary tree
- A data structure used for efficient searching, insertion, and deletion.

Binary Search Tree property:

For every node X in the tree:

- All the values in the left subtree are smaller than the value at X.
- All the values in the right subtree are larger than the value at X.

- Not all binary trees are binary search trees.
Binary Search Trees

A binary search tree

Not a binary search tree

The same set of values may have multiple valid BSTs

- Maximum depth of a node: N
- Average depth of a node: $O(\log_2 N)$

Binary Search Trees

An inorder traversal of a BST shows the values in sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20

Binary Search Trees: operations

- insert(x)
- remove(x) (or delete)
- isEmpty() (returns bool)
- makeEmpty()
- find(x) (returns bool)
- findMin() (returns ItemType)
- findMax() (returns ItemType)
BST: find(x)

Recursive Algorithm:
- if we are searching for 15 we are done.
- If we are searching for a key < 15, then we should search in the left subtree.
- If we are searching for a key > 15, then we should search in the right subtree.

Example: search for 9
- compare 9 to 15, go left
- compare 9 to 6, go right
- compare 9 to 7 go right
- compare 9 to 13 go left
- compare 9 to 9: found

Pseudocode

```c
bool find (ItemType x, TreeNode t) {
    if (isEmpty(t))
        return false
    if (x < value(t))
        return find (x, left(t))
    if (x > value(t))
        return find (x, right(t))
    return true // x == value(t)
}
```

BST: findMin()

- Smallest element is found by always taking the left branch.
- Pseudocode
- Recursive
- Tree must not be empty

```c
ItemType findMin (TreeNode t) {
    assert (!isEmpty(t))
    if (isEmpty(left(t)))
        return value(t)
    return findMin (left(t))
}
```
BST: insert(x)

- Algorithm is similar to find(x)
- If x is found, do nothing (no duplicates in tree)
- If x is not found, add a new node with x in place of the last empty subtree that was searched.

Inserting 13:

```
25
```

Pseudocode

```
bool insert (ItemType x, TreeNode t) {
    if (isEmpty(t))
        make t's parent point to new TreeNode(x)
    else if (x < value(t))
        insert (x, left(t))
    else if (x > value(t))
        insert (x, right(t))
    //else x == value(t), do nothing, no duplicates
}
```

Linked List example:

- Append x to the end of a singly linked list:
 - Pass the node pointer by reference
 - Recursive

```
void List<T>::append (T x) {
    append(x, head);
}
```

```
void List<T>::append (T x, Node *& p) {
    if (p == NULL) {
        p = new Node();
        p->data = x;
        p->next = NULL;
    } else
        append (x, p->next);
}
```

BST: remove(x)

- Algorithm is starts with finding(x)
- If x is not found, do nothing
- If x is not found, remove node carefully.
 - Must remain a binary search tree (smallers on left, biggers on right).
BST: remove(x)

- Case 1: Node is a leaf
 - Can be removed without violating BST property
- Case 2: Node has one child
 - Make parent pointer bypass the Node and point to child

```
Figure 4.24 Deletion of a node (4) with one child, before and after
```

```
removeMin
```

```
template<class ItemType>
void BST_3358<ItemType>::removeMin(TreeNode*& t) {
    assert (t); // t must not be empty
    if (t->left) {
        removeMin(t->left);
    } else {
        TreeNode *temp = t;
        t = t->right; // it's ok if this is null
        delete temp;
    }
}
```

```
deleteItem
```

```
template<class ItemType>
void BST_3358<ItemType>::deleteItem(TreeNode*& t, const ItemType& newItem) {
    if (t == NULL) return; // not found
    else if (newItem < t->data) // search left
        deleteItem(t->left, newItem);
    else if (newItem > t->data) // search right
        deleteItem(t->right, newItem);
    else { // newItem == t->data: remove t
        if (t->left && t->right) { // two children
            t->data = findMin(t->right);
            removeMin(t->right);
        } else { // one or zero children: skip over t
            TreeNode *temp = t;
            if (t->left)
                t = t->left;
            else
                t = t->right; // ok if this is null
            delete temp;
        }
    }
}
```

```
Figure 4.25 Deletion of a node (2) with two children, before and after
```

- Case 3: Node has 2 children
 - Replace it with the minimum value in the right subtree
 - Remove minimum in right:
 - will be a leaf (case 1), or have only a right subtree (case 2)
 -- cannot have left subtree, or it's not the minimum

```
remove(2): replace it with the minimum of its right subtree (3) and delete that node.
```

```
Note: t is a pointer passed by reference
```

```
Note: t is a pointer passed by reference
```
Binary Search Trees: runtime analyses

- Cost of each operation is proportional to the number of nodes accessed
- Depth of the node (height of the tree)
- Best case: $O(\log N)$ (balanced tree)
- Worst case: $O(N)$ (tree is a list)
- Average case: ??
 - Theorem: on average, the depth of a binary search tree node, assuming random insertion sequences, is $1.38 \log N$