Trees, Binary Search Trees, and Heaps

CS 5301
Fall 2013

Jill Seaman

Gaddis ch. 20, Main + Savitch: ch. 10, 11.1-2

Tree: non-recursive definition

- **Tree**: set of nodes and directed edges
 - **root**: one node is distinguished as the root
 - Every node (except root) has exactly exactly one edge coming into it.
 - Every node can have any number of edges going out of it (zero or more).
- **Parent**: source node of directed edge
- **Child**: terminal node of directed edge

Tree: recursive definition

- **Tree**:
 - is empty or
 - consists of a root node and zero or more nonempty subtrees, with an edge from the root to each subtree (a subtree is a Tree).

Figure 4.1 Generic tree

Figure 4.2 A tree

- edges are directed down (source is higher)
- D is the parent of H. Q is a child of J.
- **Leaf**: a node with no children (like H and P)
- **Sibling**: nodes with same parent (like K,L,M)
Tree terms

- **Path**: sequence of (directed) edges
- **Length of path**: number of edges on the path
- **Depth of a node**: length of path from root to that node.
- **Height of a node**: length of longest path from node to a leaf.

Tree traversal

- **Tree traversal**: operation that converts the values in a tree into a list
 - Often the list is output
- **Pre-order traversal**
 - Print the data from the root node
 - Do a pre-order traversal on first subtree
 - Do a pre-order traversal on second subtree
 - ... Do a preorder traversal on last subtree
 - This is recursive. What’s the base case?

Preorder traversal: Expression Tree

- print node value, process left tree, then right
- prefix notation (for arithmetic expressions)

Postorder traversal: Expression Tree

- process left tree, then right, then node
- postfix notation (for arithmetic expressions)
Inorder traversal: Expression Tree

- if each node has 0 to 2 children, you can do inorder traversal
- process left tree, print node value, then process right tree

\(a + b \cdot c + d \cdot e + f \cdot g \)

infix notation (for arithmetic expressions)

Binary Trees

- **Binary Tree**: a tree in which no node can have more than two children.
- height: shortest: \(\log_2(n) \) tallest: \(n \)

Binary Trees: implementation

- Structure with a data value, and a pointer to the left subtree and another to the right subtree.
- Like a linked list, but two “next” pointers.
- This structure can be used to represent any binary tree.

```
struct TreeNode {
    <type> data;  // the data
    BinaryNode *left; // left subtree
    BinaryNode *right; // right subtree
};
```

Binary Search Trees

- A special kind of binary tree
- A data structure used for efficient searching, insertion, and deletion.
- **Binary Search Tree property**:

 For every node \(X \) in the tree:
 - All the values in the left subtree are **smaller** than the value at \(X \).
 - All the values in the right subtree are **larger** than the value at \(X \).
- Not all binary trees are binary search trees.
Binary Search Trees

A binary search tree
Not a binary search tree

Binary Search Trees

An inorder traversal of a BST shows the values in sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20

Binary Search Trees: operations

- insert(x)
- remove(x) (or delete)
- isEmpty() (returns bool)
- find(x) (returns bool)
- findMin() (returns ItemType)
- findMax() (returns ItemType)

BST: find(x)

Recursive Algorithm:
- if we are searching for 15 we are done.
- If we are searching for a key < 15, then we should search in the left subtree.
- If we are searching for a key > 15, then we should search in the right subtree.
BST: find(x)

Example: search for 9
- compare 9 to 15, go left
- compare 9 to 6, go right
- compare 9 to 7 go right
- compare 9 to 13 go left
- compare 9 to 9: found

BST: findMin()

- Smallest element is found by always taking the left branch.
- Pseudocode
  ```java
  ItemType findMin (TreeNode t) {
    assert (!isEmpty(t))
    if (isEmpty(left(t)))
      return value(t)
    return findMin (left(t))
  }
  ```

BST: insert(x)

- Algorithm is similar to find(x)
- If x is found, do nothing (no duplicates in tree)
- If x is not found, add a new node with x in place of the last empty subtree that was searched.

```
bool find (ItemType x, TreeNode t) {
  if (isEmpty(t))
    return false  // Base case
  if (x < value(t))
    return find (x, left(t))
  if (x > value(t))
    return find (x, right(t))
  return true  // x == value(t)
}
```
BST: insert(x)

- **Pseudocode**
- **Recursive**

```c
bool insert (ItemType x, TreeNode t) {
    if (isEmpty(t))
        make t's parent point to new TreeNode(x)
    else if (x < value(t))
        insert (x, left(t))
    else if (x > value(t))
        insert (x, right(t))
    //else x == value(t), do nothing, no duplicates
}
```

BST: remove(x)

- Algorithm is starts with finding(x)
- If x is not found, do nothing
- If x is not found, remove node carefully.
 - Must remain a binary search tree (smallers on left, biggers on right).

Linked List example:

- Append x to the end of a singly linked list:
 - Pass the node pointer by reference
 - Recursive

```c
void List::append (double x) {  // Public function
    append(x, head);
}

void List::append (double x, Node *& p) {  // Private recursive function
    if (p == NULL) {
        p = new Node();
        p->data = x;
        p->next = NULL;
    } else
        append (x, p->next);
}
```

BST: remove(x)

- **Case 1:** Node is a leaf
 - Can be removed without violating BST property
- **Case 2:** Node has one child
 - Make parent pointer bypass the Node and point to child

![Diagram](image.png)
BST: remove(x)

- Case 3: Node has 2 children
 - Replace it with the minimum value in the right subtree
 - Remove minimum in right:
 - will be a leaf (case 1), or have only a right subtree (case 2)
 - cannot have left subtree, or it’s not the minimum

Binary heap data structure

- A binary heap is a special kind of binary tree
 - has a restricted structure (must be complete)
 - has an ordering property (parent value is smaller than child values)
 - NOT a Binary Search Tree!
- Used in the following applications
 - Priority queue implementation: supports enqueue and deleteMin operations in O(log N)
 - Heap sort: another O(N log N) sorting algorithm.

Binary Heap: structure property

- **Complete binary tree**: a tree that is completely filled
 - every level except the last is completely filled.
 - the bottom level is filled left to right (the leaves are as far left as possible).

Complete Binary Trees

- A complete binary tree can be easily stored in an array
 - place the root in position 1 (for convenience)
Complete Binary Trees
Properties

- In the array representation:
 - put root at location 1
 - use an int variable (size) to store number of nodes
 - for a node at position i:
 - left child at position $2i$ (if $2i \leq$ size, else i is leaf)
 - right child at position $2i + 1$ (if $2i+1 \leq$ size, else i is leaf)
 - parent is in position $\lfloor i/2 \rfloor$ (or use integer division)

Heap: insert(x)

- First: add a node to tree.
 - must be placed at next available location, size+1, in order to maintain a complete tree.
- Next: maintain the ordering property:
 - if x is greater than its parent: done
 - else swap with parent, repeat
- Called “percolate up” or “reheap up”
- preserves ordering property

Binary Heap:
ordering property

- In a heap, if X is a parent of Y, value(X) is less than or equal to value(Y).
- the minimum value of the heap is always at the root.

Heap: insert(x)

- Figure 21.7: Attempt to insert 14, creating the hole and bubbling the hole up.
- Figure 21.8: The remaining two steps required to insert 14 in the original heap shown in Figure 21.7.
Heap: deleteMin()

- Minimum is at the root, removing it leaves a hole.
 - The last element in the tree must be relocated.
- First: move last element up to the root
- Next: maintain the ordering property, start with root:
 - if both children are greater than the parent: done
 - otherwise, swap the smaller of the two children with the parent, repeat
- Called “percolate down” or “reheap down”
- preserves ordering property
- $O(\log n)$