Recursion

Week 7
Gaddis:19.1-19.4

CS 5301
Fall 2013
Jill Seaman

What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself:

```cpp
void message() {
    cout << “This is a recursive function.\n”;
    message();
}
int main() {
    message();
}
```

What happens when this is executed?

How can a function call itself?

- Infinite Recursion:

 This is a recursive function.
 ...

Recursive message() modified

- How about this one?

```cpp
void message(int n) {
    if (n > 0) {
        cout << “This is a recursive function.\n”;
        message(n-1);
    }
}
int main() {
    message(5);
}
```
Tracing the calls

- 6 nested calls to message:

  ```
  message(5):
  outputs “This is a recursive function”
  calls message(4):
  outputs “This is a recursive function”
  calls message(3):
  outputs “This is a recursive function”
  calls message(2):
  outputs “This is a recursive function”
  calls message(1):
  outputs “This is a recursive function”
  calls message(0):
  does nothing, just returns
  ```

- depth of recursion (#times it calls itself) = 5!

Why use recursion?

- It is true that recursion is never **required** to solve a problem
 - Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources

However:

- Some repetitive problems are more easily and naturally solved with recursion
 - the recursive solution is often shorter, more elegant, easier to read and debug.

How to write recursive functions

- Branching is required (If or switch)
- Find a **base case**
 - one (or more) values for which the result of the function is **known** (no repetition required to solve it)
 - no recursive call is allowed here
- Develop the **recursive case**
 - For a given argument (say n), assume the function works for a smaller value (n-1).
 - Use the result of calling the function on n-1 to form a solution for n

Recursive function example **factorial**

- Mathematical definition of n! (factorial of n)
  ```
  if n=0 then n! = 1
  if n>0 then n! = 1 x 2 x 3 x ... x n
  ```

- What is the base case?
 - n=0 (result is 1)
- If we assume (n-1)! can be computed, how can we get n! from that?
 - n! = n * (n-1)!
Recursive function example

factorial

```c
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
```

```c
int main() {
    int number;
    cout << "Enter a number ";
    cin >> number;
    cout << "The factorial of " << number << " is 
        " << factorial(number) << endl;
}
```

Tracing the calls

- Calls to factorial:
 - factorial(4):
 - return 4 * factorial(3); => 4 * 6 = 24
 - calls factorial(3):
 - return 3 * factorial(2); => 3 * 2 = 6
 - calls factorial(2):
 - return 2 * factorial(1); => 2 * 1 = 2
 - calls factorial(1):
 - return 1 * factorial(0); => 1 * 1 = 1
 - calls factorial(0):
 - return 1;

- Every call except the last makes a recursive call
- Each call makes the argument smaller

Recursive functions over ints

- Many recursive functions (over integers) look like this:
  ```c
  type f(int n) {
    if (n==0)
        //do the base case
    else
        // ...  f(n-1) ...
  }
  ```

Recursive functions over lists

- You can write recursive functions over lists using the length of the list instead of n
 - base case: length=0 ==> empty list
 - recursive case: assume f works for list of length n-1, what is the answer for a list with one more element?
- We will do examples with:
 - arrays
 - strings
Recursive function example

sum of the list

- Recursive function to compute sum of a list of numbers
- What is the base case?
 - length=0 (empty list) => sum = 0
- If we assume we can sum the first n-1 items in the list, how can we get the sum of the whole list from that?
 - sum (list) = sum (list[0..n-2]) + list[n-1]

Assume I am given the answer to this

Recursive function example

sum of a list (array)

```cpp
int sum(int a[], int size) {  //size is number of elems
    if (size==0)
        return 0;
    else
        return sum(a,size-1) + a[size-1];
}
```

For a list with size = 4: sum(a,4)

Recursive function example

count character occurrences in a string

- Recursive function to count the number of times a specific character appears in a string
- We will use the string member function substr to make a smaller string
- str.substr (int pos, int length);
- pos is the starting position in str
- length is the number of characters in the result

```cpp
char access: x[1] is the second element ('e')
```

Recursive function example

count character occurrences in a string

```cpp
int numChars(char target, string str) {
    if (str.empty()) {
        return 0;
    } else {
        int result = numChars(search, str.substr(1,str.size()));
        if (str[0]==target)
            return 1+result;
        else
            return result;
    }
}
```

```cpp
int main() {
    string a = "hello";
    cout << a << numChars('l',a) << endl;
}
```
Three required properties of recursive functions

- **A Base case**
 - a non-recursive branch of the function body.
 - must return the correct result for the base case

- **Smaller caller**
 - each recursive call must pass a smaller version of the current argument.

- **Recursive case**
 - assuming the recursive call works correctly, the code must produce the correct answer for the current argument.

Recursive function example

Greatest common divisor

- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers evenly (without a remainder)
- This is a variant of Euclid’s algorithm:

 \[
 \text{gcd}(x, y) = \begin{cases}
 y & \text{if } y \text{ divides } x \text{ evenly, otherwise:} \\
 \text{gcd}(y, \text{remainder of } x/y) \text{ (or } \text{gcd}(y, x \% y) \text{ in c++})
 \end{cases}
 \]

- It’s a recursive definition
- If \(x < y \), then \(x \% y \) is \(x \) (so \(\text{gcd}(x, y) = \text{gcd}(y, x) \))
- This moves the larger number to the first position.

Recursive function example

- **Code:**

  ```c
  int gcd(int x, int y) {
    cout << "gcd called with " << x << " and " << y << endl;
    if (x % y == 0) {
      return y;
    } else {
      return gcd(y, x % y);
    }
  }
  
  int main() {
    cout << "GCD(9,1): " << gcd(9,1) << endl;
    cout << "GCD(1,9): " << gcd(1,9) << endl;
    cout << "GCD(9,2): " << gcd(9,2) << endl;
    cout << "GCD(70,25): " << gcd(70,25) << endl;
    cout << "GCD(25,70): " << gcd(25,70) << endl;
  }
  ```

Recursive function example

- **Output:**

 gcd called with 9 and 1
 GCD(9,1): 1
 gcd called with 1 and 9
 gcd called with 9 and 1
 GCD(1,9): 1
 gcd called with 9 and 2
 gcd called with 2 and 1
 GCD(9,2): 1
 gcd called with 70 and 25
 gcd called with 25 and 20
 gcd called with 20 and 5
 GCD(70,25): 5
 gcd called with 25 and 70
 gcd called with 70 and 25
 gcd called with 25 and 20
 gcd called with 20 and 5
 GCD(25,70): 5