CS 4354: Object-Oriented Design and Implementation
Summer II 2014
Section 751

Instructor: Dr. Jill Seaman
Nueces 221/Comal 307G
245-4706
js236@txstate.edu

Class Website: http://www.cs.txstate.edu/~js236/cs4354

Office Hours: MTWR: 12:00PM – 1:00PM (subject to change, see website) and by appointment.

Meeting Time/Place: MTWR 10:00AM-12:00PM DERR 235

Open Labs: DERR 231: Linux Lab
MCS 590: Windows Lab

Textbooks:

List of recommended/required readings: See the class website.

Prerequisites: Grade of C or better in CS 3398

Course Description: An in-depth study of object-oriented design and implementation issues with emphasis on understanding the life cycle of object-oriented software, Unified Modeling Language, inheritance and polymorphism, designing remote and persistent objects, and exception handling. In-depth study of Java object-oriented language. Java will be used for implementing the exercises.

Grading:

 Attendance: expected
 Exercises and Programming Assignments: 35%
 Midterm: 30% Tues, July 22
 Final Exam (comprehensive): 35% Thurs, Aug 7, 11:00AM
Attendance: I record attendance every day and I expect you to be in class every day. If you are unable to attend, you are responsible for the material and announcements that were covered that day.

Exercise and Programming Assignments: This portion of your grade is based on written homework assignments and programming assignments. The homework assignments involve drawing models and providing some written explanations. The programming assignments involve developing programs in Java. **You will do this work in pairs (with a partner).**

Makeup Policy: Exercises and programming assignments cannot be made up. Exams may be made up in exceptional circumstances, with documentation and/or approval from the instructor.

TRACS: Your grades and some resources will be posted on TRACS. Everything else, including assignments and lecture presentations, will be on the class website.

Withdrawals/drops: You must follow the withdrawal and drop policy set up by the University and the College of Science. You are responsible for making sure that the drop process is complete. http://www.registrar.txstate.edu/registration/drop-a-class.html

Last day to drop: July 25, 2014.

Notifications from the instructor: Notifications related to this class will be sent to your Texas State e-mail account. Be sure to check it regularly.

Classroom Behavior: The main rule is to not disrupt or distract other students during class. Please do not arrive late or leave early (without notifying the instructor).

Academic Honesty: You are expected to adhere to both the University's Academic Honor Code as described here: http://www.txstate.edu/effective/upps/upps-07-10-01.html, as well as the Computer Science Department Honor Code, described here: 2013 0426 HonestyPolicy CSPPS.doc.

- **All assignments are to be done in pairs.** Each pair must write their own code.
- Do not include code (or other materials) obtained from the internet in your assignments (except what is provided or allowed by the instructor).
- **Do not email your program to anyone (except your partner or the instructor)!**

The penalty for submitting a program that has been derived from the internet or any other non-approved source will be a 0 for that assignment. Violators will be reported to the Texas State Honor Code Council (http://www.txstate.edu/honorcodecouncil/).
Accommodations for students with disability:

Any student with a special needs requiring special accommodations should inform me during the first two weeks of classes. The student should also contact the office of disability services at the LBJ student center.

Course Objectives:

At the end of the semester the student should be able to:

1. Read and write code in a non-C++ language (Java)
2. Design, implement, test, and debug programs written in Java.
3. Describe the concepts of inheritance and polymorphism and incorporate them into Java programs.
4. Describe the semantics of exception handling in Java, and use it to write reliable Java code.
5. Read and write Java programs that use persistence (serializable objects).
6. Read and write Java programs that use threads to implement concurrency.
7. Read, design, and draw the following models using the Unified Modeling Language (UML):
 - Use case diagrams
 - Class diagrams
 - Sequence diagrams
 - Activity diagrams
 - State diagrams
8. Use GRASP (General Responsibility Assignment Software Patterns) to determine what attributes and operations should go in each class in a UML class diagram.
9. Write Java code that implements the designs specified by UML diagrams.
10. Describe the following Design Patterns and create UML designs using them, and implement the designs in Java programs.
 - Adapter
 - Strategy
 - Abstract Factory
 - Command
 - Composite
 - Observer
 - Proxy
 - Facade
 - Bridge
11. Determine the proper design pattern for a given problem.
12. Use Refactoring to improve the maintainability of Java programs
13. Use JUnit to perform unit testing on Java code.
14. Use Javadoc to specify the interface (API) of Java objects.