Week 1: Introduction to C++

Gaddis: Chapter 2
(excluding 2.1, 2.11, 2.14)

CS 1428
Fall 2014

Jill Seaman

Literals

* Aliteral represents a constant value used in a
program statement.

* Numbers: 0, 34, 3.14159, -1.8el2, efc.
* Characters: 'a', 'z', 't', 's', etc.
 Strings (sequence of characters):

» “Hello”, “This is a string”

» “100 years”, “100", “y", etc.
* NOTE: These are all different: 5, 's', #“s5~

2

Special characters

* Newline: ‘\n"
* Double quote: “\""'.
* These can occur in strings:
» “Hello\nthere”
» “she said \"boo\” very quietly”
* See textbook for more
* It's a backslash (\), not a slash (/)

2.2 The cout Object

» cout: short for “console output”

» a stream object: represents the contents of the screen

» <<: the stream insertion operator

» use it to send data to cout (to be output to the screen)

cout << “This is an example.”

* when this instruction is executed, the console
(screen) looks like this:

This is an example.




The endl manipulator

* endl: short for “end line”

» send it to cout when you want to start a new line of output.

cout << “Hello " << endl << “there!”;
* or you can use the newline character: \n
cout << “Hello \nthere!”;

 Either way the output to the screen is:

Hello
there!

more examples

cout << “Hello ” << *“therel!”;

Hello there!

cout << “Hello ”;
cout << “there!”;

Hello there!

cout << “The best selling book on Amazon\n is \”The Help\"”;

The best selling book on Amazon
is "The Help”

2.5 ldentifiers

* An identifier is a name for some program
element (like a variable).

* Rules:
» May not be a keyword (see Table 2.4 in the book)
» First character must be a letter or underscore

» Following characters must be letters, numbers or
underscores.

* |dentifiers are case-sensitive:

» myVariable is not the same as MyVariable

2.4 Variables (and Literals)

Variable: named location in main memory
Has a name and a datatype

» <datatype> <identifier>

» The data type indicates the kind of data it can contain.

A variable must be defined before it can be
used!!

Examples:

» int someNumber;

» char firstLetter;




2.12 Variable Assignments
and Initialization

« An assignment statement uses the = operator
to store a value in an already defined variable.

» someNumber = 12;

* When this statement is executed, the computer
stores the value 12 in memory, in the location
named “someNumber”.

* The variable receiving the value must be on the
left side of the = (the following does NOT work):

» 12 = someNumber; //This is an ERROR

Example program using a variable

#include <iostream>
using namespace std;

int main() {
int number;

number = 100;

cout << “The value of the number is “
<< number << endl;

return 0;

output screen: | The value of the number is 100

Variable Initialization

 To initialize a variable means to assign it a
value when it is defined:

» int length = 12;

* You can define and initialize multiple variables
at once (and change them later) :

int length = 12, width = 5, area;
area = 35;

length = 10;

area =40;

Data Types

 Variables are classified according to their data
type.

» The data type determines the kind of
information that may be stored in the variable.

« A data type is a set of values.
* Generally two main (types of) data types:

» Numeric

» Character-based




C++ Data Types

int, short, long

» whole numbers (integers)

float, double

» real numbers (with fractional amounts, decimal points)
bool

» logical values: true and false

char

» a single character

string

» any text, a sequence of characters 13

2.6 Integer Data Types

* Whole numbers such as 12, 7, and -99
 Typical ranges (may vary on different systems):

Data Type: Range of values:

short -32,768 to 32,767

unsigned short 0 to 65,535

int -2,147,483,648 to 2,147,483,647
unsigned int 0 to 4,294,967,295

long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,295

* Example variable definitions:

short dayOfWeek;
unsigned long distance;
int xCoordinate;

2.9 Floating-Point Data Types

Real numbers such as 12.45, and -3.8
Typical ranges (may vary on different systems):

Data Type: Range of values:

float +/- 3.4e +/- 38 (~7 digits of precision)
double +/- 1.7e +/- 308 (~15 digits of precision)
long double +/- 1.7e +/- 308 (~15 digits of precision)

Floating-point literals can be represented in
— Fixed point (decimal) notation:

31.4159 0.0000625
— E (scientific) notation:

3.14159E1 6.25e-5 15

Example program using floating-
point data types

// This program uses floating point data types.
#include <iostream>
using namespace std;

int main() {
float distance;
double mass;

distance = 1.495979E1l1;

mass = 1.989E30;

cout << "The Sun is " << distance << " meters away.\n";
cout << "The Sun\'s mass is " << mass << " kilograms.\n";
return 0;

The Sun is 1.49598e+1l meters away.

output screen: The Sun's mass is 1.989e+30 kilograms.




2.10 The boo1 Data Type

« The values true and false.
 Literal values: true, false
* (false is equivalent to 0, true is equivalent to 1)

int main() {
bool boolvValue;
boolvalue = true;

cout << boolValue << endl; output screen:
boolvalue = false; 1

cout << boolValue << endl; 0

return 0;

2.7 The char Data Type

* All the keyboard and printable symbols.
e Literal values: ‘a’ ‘57 2+ ‘b’
» see also: slides 2 and 3.

* Numeric value of character from the ASCII
character set is stored in memory:

CODE: MEMORY: OUTPUT:
char letter; letter

letter = ‘C'; [¢]

cout << letter << endl; 67

Appendix B shows the ASCII code values

2.8 The C++ string class

Sequences of characters
Requires the string header file: #include <string>
To define string variables in programs:

string firstName, lastName;

To assign literals to variables: | See slides 2 and 3 for more

examples of string literals.

firstName = "George";

lastName = "Washington";

To display via cout

cout << firstName << " " << lastName;

OUTPUT: | George Washington

2.13 Scope

» The scope of a variable is the part of the
program in which the variable can be accessed.

e A variable cannot be used before it is defined.

// This program can't find its variable.
#include <iostream>
using namespace std;

int main() {
cout << value; // ERROR! value not defined yet!

int value = 100;
return 0;




2.15 Comments

» Used to document parts of the program
* Intended for humans reading the source code
of the program:
— Indicate the purpose of the program
— Describe the use of variables
— Explain complex sections of code

 Are ignored by the compiler

21

Single and Mult-Line Comments

 Single-Line comments begin with // through to
the end of line:

int length = 12; // length in inches
int width = 15; // width in inches
int area; // calculated area
// calculate rectangle area

area = length * width;

* Multi-Line comments begin with /*, end with */

/* this is a multi-line
comment

*/

int area; /* calculated area */

22

2.16 Named Constants

« Named constant : variable whose value cannot
be changed during program execution

» Used for representing constant values with
descriptive names:
const double TAX RATE = 0.0675;
const int NUM STATES = 50; N\

‘NokxinMaHzaﬁonrequWedﬂ

» Often named in uppercase letters
(see style guidelines)

23

2.17 Programming Style

The visual organization of the source code

Includes the use of spaces, tabs, and blank
lines

Includes naming of variables, constants.
Includes where to use comments.

Purpose: improve the readability of the source
code

24




Programming Style

Common elements to improve readability:
« Braces { } aligned vertically
* Indentation of statements within a set of braces

» Blank lines between declaration and other
statements

* Long statements wrapped over multiple lines
with aligned operators

See the Style Guidelines on the class website.
You must follow these in your programming assignments.

25




