
Week 1: Introduction to C++

Gaddis: Chapter 2 
(excluding 2.1, 2.11, 2.14) 

!
CS 1428 
Fall 2014 

!
Jill Seaman

1

Literals
! A literal represents a constant value used in a 

program statement. 
! Numbers:  0, 34, 3.14159, -1.8e12, etc. 
! Characters:  'A', 'z', '!', '5',  etc. 
! Strings (sequence of characters):  
‣ “Hello”, “This is a string” !
‣ “100 years”, “100”, “Y”, etc. !

! NOTE: These are all different:  5, '5', “5”

2

Special characters
! Newline: ‘\n' 
! Double quote:  ‘\”'. 
! These can occur in strings:  
‣ “Hello\nthere” !
‣ “she said \”boo\” very quietly” !

! See textbook for more 
! It’s a backslash (\), not a slash (/)

3

2.2 The cout Object

4

! cout: short for “console output” 
‣ a stream object: represents the contents of the screen 

! <<: the stream insertion operator 
‣ use it to send data to cout (to be output to the screen) 

!
! when this instruction is executed, the console 

(screen) looks like this: 

cout << “This is an example.”

This is an example.



The endl manipulator

5

! endl: short for “end line” 
‣ send it to cout when you want to start a new line of output. 

!
! or you can use the newline character: \n 
!
! Either way the output to the screen is: 
!
!

cout << “Hello ” << endl << “there!”;

cout << “Hello \nthere!”;

Hello !
there!

more examples

6

cout << “Hello ”;!
cout << “there!”;

Hello there!

cout << “Hello ” << “there!”;

Hello there!

cout << “The best selling book on Amazon\n is \”The Help\””;

The best selling book on Amazon!
 is ”The Help”

2.5 Identifiers

7

! An identifier is a name for some program 
element (like a variable). 

! Rules: 
‣ May not be a keyword (see Table 2.4 in the book) 

‣ First character must be a letter or underscore 

‣ Following characters must be letters, numbers or 
underscores. 

! Identifiers are case-sensitive: 
‣ myVariable is not the same as MyVariable

2.4 Variables (and Literals)

8

! Variable: named location in main memory 
! Has a name and a datatype 
‣ <datatype> <identifier> 

‣ The data type indicates the kind of data it can contain. 

! A variable must be defined before it can be 
used!! 

! Examples: 
‣ int someNumber;!

‣ char firstLetter;



2.12 Variable Assignments  
and Initialization

9

! An assignment statement uses the = operator 
to store a value in an already defined variable. 
‣ someNumber = 12; 

! When this statement is executed, the computer 
stores the value 12 in memory, in the location 
named “someNumber”. 

! The variable receiving the value must be on the 
left side of the = (the following does NOT work): 
‣ 12 = someNumber;  //This is an ERROR

Example program using a variable
#include <iostream>!
using namespace std;!
!
int main()  {!
   int number;!
!
   number = 100;!
   cout << “The value of the number is “ !
        << number  << endl;!
   return 0;!
}

10
The value of the number is 100!output screen:

Variable Initialization

11

! To initialize a variable means to assign it a 
value when it is defined: 
‣ int length = 12; 

! You can define and initialize multiple variables 
at once (and change them later) : 

int length = 12, width = 5, area;!
area = 35;!
length = 10;!
area =40;

Data Types

12

! Variables are classified according to their data 
type. 

! The data type determines the kind of 
information that may be stored in the variable. 

! A data type is a set of values. 
! Generally two main (types of) data types:  
‣ Numeric 

‣ Character-based



C++ Data Types
! int, short, long !
‣ whole numbers (integers) 

! float, double!
‣ real numbers (with fractional amounts, decimal points) 

! bool!
‣ logical values: true and false 

! char!
‣ a single character 

! string!
‣ any text, a sequence of characters 13

2.6 Integer Data Types

14

! Whole numbers such as 12, 7, and -99 
! Typical ranges (may vary on different systems): 
!

!

!

!
! Example variable definitions:

Data Type:  Range of values:                 
short   -32,768 to 32,767                          
unsigned short 0 to 65,535           
int   -2,147,483,648 to 2,147,483,647                              
unsigned int  0 to 4,294,967,295               
long   -2,147,483,648 to 2,147,483,647                           
unsigned long             0 to 4,294,967,295

short dayOfWeek;!
unsigned long distance;!
int xCoordinate;

2.9 Floating-Point Data Types

15

! Real numbers such as 12.45, and -3.8 
! Typical ranges (may vary on different systems): 
!

!

!
! Floating-point literals can be represented in 

– Fixed point (decimal) notation: 
 31.4159   0.0000625 
– E (scientific) notation: 
 3.14159E1   6.25e-5

Data Type:  Range of values:                 
float   +/- 3.4e +/- 38 (~7 digits of precision)                           
double   +/- 1.7e +/- 308 (~15 digits of precision)                       
long double  +/- 1.7e +/- 308 (~15 digits of precision)               

Example program using floating-
point data types

// This program uses floating point data types.!
#include <iostream>!
using namespace std;!
!
int main() {!
   float distance;!
   double mass;!
!
   distance = 1.495979E11;!
   mass = 1.989E30;!
   cout << "The Sun is " << distance << " meters away.\n";!
   cout << "The Sun\'s mass is " << mass << " kilograms.\n";!
   return 0;!
}

16

The Sun is 1.49598e+11 meters away.!
The Sun's mass is 1.989e+30 kilograms.!output screen:



2.10 The bool Data Type

17

! The values true and false. 
! Literal values:  true, false 
! (false is equivalent to 0, true is equivalent to 1)

int main() {!
   bool boolValue;!
   boolValue = true;!
   cout << boolValue << endl;!
   boolValue = false;!
   cout << boolValue << endl;!
   return 0;!
} 

1!
0!

output screen:

2.7 The char Data Type

18

! All the keyboard and printable symbols. 
! Literal values:  ‘A’ ‘5’ ‘?’ ‘b’!
‣ see also: slides 2 and 3. 

! Numeric value of character from the ASCII 
character set is stored in memory:

CODE: 
char letter; 
letter = ‘C'; 
cout << letter << endl;

MEMORY: 
letter

67

Appendix B shows the ASCII code values

OUTPUT:

C!

2.8 The C++ string class 

• Sequences of characters 
• Requires the string header file: 
• To define string variables in programs: 
!

• To assign literals to variables: 
firstName = "George"; 
lastName = "Washington"; 

• To display via cout 
cout << firstName << " " << lastName;

19
OUTPUT: George Washington!

#include <string>

string firstName, lastName;

See slides 2 and 3 for more 
examples of string literals.

2.13 Scope

20

! The scope of a variable is the part of the 
program in which the variable can be accessed. 

! A variable cannot be used before it is defined.
// This program can't find its variable.!
#include <iostream>!
using namespace std;!
!
int main() {!
   cout << value; // ERROR! value not defined yet!!
!
   int value = 100;!
   return 0;!
}



2.15 Comments

21

• Used to document parts of the program 
• Intended for humans reading the source code 

of the program: 
– Indicate the purpose of the program 
– Describe the use of variables 
– Explain complex sections of code 

• Are ignored by the compiler

Single and Mult-Line Comments

22

• Single-Line comments begin with // through to 
the end of line: 
!

!

!

• Multi-Line comments begin with /*, end with */

int length = 12; // length in inches!
int width = 15;  // width in inches!
int area;        // calculated area!
// calculate rectangle area!
area = length * width;

/* this is a multi-line!
   comment!
*/!
!
int area;   /* calculated area */

2.16 Named Constants

23

• Named constant : variable whose value cannot 
be changed during program execution 
!

• Used for representing constant values with 
descriptive names: 
 const double TAX_RATE = 0.0675; 
 const int NUM_STATES = 50; 
!

• Often named in uppercase letters  
(see style guidelines)

Note: initialization required.

2.17 Programming Style

24

• The visual organization of the source code 
• Includes the use of spaces, tabs, and blank 

lines 
• Includes naming of variables, constants. 
• Includes where to use comments. 
• Purpose: improve the readability of the source 

code



Programming Style

25

Common elements to improve readability: 
• Braces { } aligned vertically 
• Indentation of statements within a set of braces 
• Blank lines between declaration and other 

statements 
• Long statements wrapped  over multiple lines 

with aligned operators

See the Style Guidelines on the class website. 
You must follow these in your programming assignments.


