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Literals

* Aliteral represents a constant value used in a
program statement.

* Numbers: 0, 34, 3.14159, -1.8el2, efc.
* Characters: 'a', 'z', 't', 's', etc.
 Strings (sequence of characters):

» “Hello”, “This is a string”

» “100 years”, “100", “y", etc.
* NOTE: These are all different: 5, 's', #“s5~
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Special characters

* Newline: ‘\n"
* Double quote: “\""'.
* These can occur in strings:
» “Hello\nthere”
» “she said \"boo\” very quietly”
* See textbook for more
* It's a backslash (\), not a slash (/)

2.2 The cout Object

» cout: short for “console output”

» a stream object: represents the contents of the screen

» <<: the stream insertion operator

» use it to send data to cout (to be output to the screen)

cout << “This is an example.”

* when this instruction is executed, the console
(screen) looks like this:

This is an example.




The endl manipulator

* endl: short for “end line”

» send it to cout when you want to start a new line of output.

cout << “Hello " << endl << “there!”;
* or you can use the newline character: \n
cout << “Hello \nthere!”;

 Either way the output to the screen is:

Hello
there!

more examples

cout << “Hello ” << *“therel!”;

Hello there!

cout << “Hello ”;
cout << “there!”;

Hello there!

cout << “The best selling book on Amazon\n is \”The Help\"”;

The best selling book on Amazon
is "The Help”

2.5 ldentifiers

* An identifier is a name for some program
element (like a variable).

* Rules:
» May not be a keyword (see Table 2.4 in the book)
» First character must be a letter or underscore

» Following characters must be letters, numbers or
underscores.

* |dentifiers are case-sensitive:

» myVariable is not the same as MyVariable

2.4 Variables (and Literals)

Variable: named location in main memory
Has a name and a datatype

» <datatype> <identifier>

» The data type indicates the kind of data it can contain.

A variable must be defined before it can be
used!!

Examples:

» int someNumber;

» char firstLetter;




2.12 Variable Assignments
and Initialization

« An assignment statement uses the = operator
to store a value in an already defined variable.

» someNumber = 12;

* When this statement is executed, the computer
stores the value 12 in memory, in the location
named “someNumber”.

* The variable receiving the value must be on the
left side of the = (the following does NOT work):

» 12 = someNumber; //This is an ERROR

Example program using a variable

#include <iostream>
using namespace std;

int main() {
int number;

number = 100;

cout << “The value of the number is “
<< number << endl;

return 0;

output screen: | The value of the number is 100

Variable Initialization

 To initialize a variable means to assign it a
value when it is defined:

» int length = 12;

* You can define and initialize multiple variables
at once (and change them later) :

int length = 12, width = 5, area;
area = 35;

length = 10;

area =40;

Data Types

 Variables are classified according to their data
type.

» The data type determines the kind of
information that may be stored in the variable.

« A data type is a set of values.
* Generally two main (types of) data types:

» Numeric

» Character-based




C++ Data Types

int, short, long

» whole numbers (integers)

float, double

» real numbers (with fractional amounts, decimal points)
bool

» logical values: true and false

char

» a single character

string

» any text, a sequence of characters 13

2.6 Integer Data Types

* Whole numbers such as 12, 7, and -99
 Typical ranges (may vary on different systems):

Data Type: Range of values:

short -32,768 to 32,767

unsigned short 0 to 65,535

int -2,147,483,648 to 2,147,483,647
unsigned int 0 to 4,294,967,295

long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,295

* Example variable definitions:

short dayOfWeek;
unsigned long distance;
int xCoordinate;

2.9 Floating-Point Data Types

Real numbers such as 12.45, and -3.8
Typical ranges (may vary on different systems):

Data Type: Range of values:

float +/- 3.4e +/- 38 (~7 digits of precision)
double +/- 1.7e +/- 308 (~15 digits of precision)
long double +/- 1.7e +/- 308 (~15 digits of precision)

Floating-point literals can be represented in
— Fixed point (decimal) notation:

31.4159 0.0000625
— E (scientific) notation:

3.14159E1 6.25e-5 15

Example program using floating-
point data types

// This program uses floating point data types.
#include <iostream>
using namespace std;

int main() {
float distance;
double mass;

distance = 1.495979E1l1;

mass = 1.989E30;

cout << "The Sun is " << distance << " meters away.\n";
cout << "The Sun\'s mass is " << mass << " kilograms.\n";
return 0;

The Sun is 1.49598e+1l meters away.

output screen: The Sun's mass is 1.989e+30 kilograms.




2.10 The boo1 Data Type

« The values true and false.
 Literal values: true, false
* (false is equivalent to 0, true is equivalent to 1)

int main() {
bool boolvValue;
boolvalue = true;

cout << boolValue << endl; output screen:
boolvalue = false; 1

cout << boolValue << endl; 0

return 0;

2.7 The char Data Type

* All the keyboard and printable symbols.
e Literal values: ‘a’ ‘57 2+ ‘b’
» see also: slides 2 and 3.

* Numeric value of character from the ASCII
character set is stored in memory:

CODE: MEMORY: OUTPUT:
char letter; letter

letter = ‘C'; [¢]

cout << letter << endl; 67

Appendix B shows the ASCII code values

2.8 The C++ string class

Sequences of characters
Requires the string header file: #include <string>
To define string variables in programs:

string firstName, lastName;

To assign literals to variables: | See slides 2 and 3 for more

examples of string literals.

firstName = "George";

lastName = "Washington";

To display via cout

cout << firstName << " " << lastName;

OUTPUT: | George Washington

2.13 Scope

» The scope of a variable is the part of the
program in which the variable can be accessed.

e A variable cannot be used before it is defined.

// This program can't find its variable.
#include <iostream>
using namespace std;

int main() {
cout << value; // ERROR! value not defined yet!

int value = 100;
return 0;




2.15 Comments

» Used to document parts of the program
* Intended for humans reading the source code
of the program:
— Indicate the purpose of the program
— Describe the use of variables
— Explain complex sections of code

 Are ignored by the compiler
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Single and Mult-Line Comments

 Single-Line comments begin with // through to
the end of line:

int length = 12; // length in inches
int width = 15; // width in inches
int area; // calculated area
// calculate rectangle area

area = length * width;

* Multi-Line comments begin with /*, end with */

/* this is a multi-line
comment

*/

int area; /* calculated area */
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2.16 Named Constants

« Named constant : variable whose value cannot
be changed during program execution

» Used for representing constant values with
descriptive names:
const double TAX RATE = 0.0675;
const int NUM STATES = 50; N\

‘NokxinMaHzaﬁonrequWedﬂ

» Often named in uppercase letters
(see style guidelines)
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2.17 Programming Style

The visual organization of the source code

Includes the use of spaces, tabs, and blank
lines

Includes naming of variables, constants.
Includes where to use comments.

Purpose: improve the readability of the source
code
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Programming Style

Common elements to improve readability:
« Braces { } aligned vertically
* Indentation of statements within a set of braces

» Blank lines between declaration and other
statements

* Long statements wrapped over multiple lines
with aligned operators

See the Style Guidelines on the class website.
You must follow these in your programming assignments.
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