
Week 2: Console I/O and Operators

Gaddis: Chapter 3
(2.14,3.1-6,3.9-10,5.1)

!
CS 1428
Fall 2014

!
Jill Seaman

1

2.14 Arithmetic Operators

! An operator is a symbol that tells the computer
to perform specific mathematical or logical
manipulations

! An operand is a value used in an operation.
! C++ has unary, binary, and ternary operators:
‣ unary (1 operand) -5!
‣ binary (2 operands) 13 - 7!
‣ ternary (3 operands) exp1 ? exp2 : exp3

2

Arithmetic Operators
! Unary operators:

!

!

! Binary operators:

!

!

3

SYMBOL OPERATION EXAMPLE

+ addition x + y
- subtraction index - 1
* multiplication hours * rate
/ division total / count
% modulus count % 3

SYMBOL OPERATION EXAMPLES

+ unary plus +10, +y
- negation -5, -x

Integer Division

4

• If both operands are integers, / (division)
operator always performs integer division.
The fractional part is lost!!
!
!
!

• If either operand is floating point, the result is
floating point.

cout << 13 / 5; // displays 2!
cout << 91 / 7; // displays 13

cout << 13 / 5.0; // displays 2.6!
cout << 91.0 / 7; // displays 13.0

Modulus

5

• % (modulus) operator computes the
remainder resulting from integer division
!
!
!
!

• % requires integers for both operands

cout << 13 % 5; // displays 3!
cout << 91 % 7; // displays 0

cout << 13 % 5.0; // error!
cout << 91.0 % 7; // error

3.1 The cin Object

6

! cin: short for “console input”
‣ a stream object: represents the contents of the screen that are

entered (typed) by the user using the keyboard.

‣ requires iostream library to be included

! >>: the stream extraction operator
‣ use it to read data from cin (entered via the keyboard)

!
‣ when this instruction is executed, it waits for the user to type,

it reads the characters until space or enter (newline) is typed,
then it stores the value in the variable.

‣ right-hand operand MUST be a variable.

cin >> height;

Console Input

7

• Output a prompt (using cout) to tell the user
what type of data to enter BEFORE using cin:
!

!

!

• You can input multiple values in one statement:
!
!
!

‣ the user may enter them on one line (separated by a space)
or on separate lines.

int diameter;!
!
cout << “What is the diameter of the circle? ”; !
cin >> diameter;

int x, y;!
cout << “Enter two integers: “ << endl;!
cin >> x >> y;

Example program using cin
#include <iostream>!
using namespace std;!
!
int main() {!
 int length, width, area;!
 cout << "This program calculates the area of a ";!
 cout << "rectangle.\n";!
 cout << "Enter the length and width of the rectangle ";!
 cout << "separated by a space.\n";!
 cin >> length >> width;!
 area = length * width;!
 cout << "The area of the rectangle is " << area << endl;!
 return 0;!
}

8

This program calculates the area of a rectangle.!
Enter the length and width of the rectangle
separated by a space.!
10 20!
The area of the rectangle is 200

output screen:

3.2 Mathematical Expressions

9

• An expression is a program component that
evaluates to a value.

• An expression can be
– a literal,
– a variable, or
– a combination of these using operators and parentheses.

• Examples: 
 

!
!

• Each expression has a type, which is the data type
of the result value.

4!
num!
x + 5!
8 * x * x – 16 * x + 3

x * y / z!
'A'!
-15e10!
2 * (l + w)

Where can expressions occur?

10

• The rhs (right-hand-side) of an assignment
statement:
!
!
!
!

• The rhs of a stream insertion operator (<<) (cout):
!
!
!

• More places we don’t know about yet . . .

x = y * 10 / 3;!
y = 8;!
num = num + 1;!
aLetter = 'W';!
x = y;

cout << “The pay is “ << hours * rate << endl;!
cout << num;!
cout << 25 / y;

Operator Precedence
(order of operations)

11

• Which operation gets done first?
!
!

• Precedence Rules specify which happens first, in
this order:
!
!

• If the expression has multiple operators from the
same level, they associate left to right or right to
left:

answer = 1 + x + z;!
result = x + 5 * y;

- (negation)!
* / %!
+ -

- (negation) Right to left!
* / % Left to right!
+ - Left to right

Parentheses

12

! You can use parentheses to override the
precedence or associativity rules:
!

!

!
! Some examples:

a + b / 4!
(a + b) / 4!
(4 * 17) + (3 – 1)!
a – (b - c)

5 + 2 * 4!
10 / 2 - 3!
8 + 12 * 2 - 4!
4 + 17 % 2 -1!
6 - 3 * 5 / 2 - 1

Exponents

• There is no operator for exponentiation in C++
• There IS a library function called “pow”
!

• The expression pow(x,3.0) is a call to the pow
function with arguments x and 3.0.

• Arguments can have type double and the result
is a double.

• If x is 2.0, then 8.0 will be stored in y.  
The value stored in x is not changed.

• #include <cmath> is required to use pow.
13

y = pow(x, 3.0); // x to the third power

3.3 Type Conversion

14

! The computer (ALU) cannot perform operations
between operands of different types.

! If the operands of an expression have different
types, the compiler will convert one to be the
type of the other

! This is called an implicit type conversion, or a
type coercion.

! Usually, the operand with the  
lower ranking type is converted to  
the type of the higher one.

double!
float!
long!
int!
char

Order of types:

Type Conversion Rules

15

• Binary ops: convert the operand with the lower
ranking type to the type of the other operand. 

!

!

• Assignment ops: rhs is converted to the type of
the variable on the lhs.

int years;!
float interestRate, result;!
. . .!
result = years * interestRate;!
// years is converted to float before being multiplied

int x, y = 4;!
float z = 2.7;!
x = 4 * z;!
//4 is converted to float, !
//then 10.8 is converted to int (10)!
cout << x << endl;

OUTPUT:

10!

3.5 Type Casting

16

• Type casting is an explicit (or manual) type
conversion.
!

• mainly used to force floating-point division 
 
 
 

• why not: 
?

int hits, atBats;!
float battingAvg;!
...!
cin >> hits >> atBats;!
battingAvg = static_cast<float>(hits)/atBats;

y = static_cast<int>(x); // converts x to int

battingAvg = static_cast<int>(hits/atBats);

3.4 Overflow/Underflow

17

• When the value assigned to a variable is too
large or small for its type.

• integers tend to wrap around, without warning:
!

!

!

• floating point value overflow/underflow:
‣ may or may not get a warning

‣ result may be 0 or random value

short testVar = 32767;!
cout << testVar << endl; // 32767, max value!
testVar = testVar + 1;!
cout << testVar << endl; //-32768, min value

3.6 Multiple Assignment

18

• You can assign the same value to several
variables in one statement:
!
!
!

• is equivalent to:

a = b = c = 12;

a = 12;!
b = 12;!
c = 12;

3.6 Combined Assignment

19

• Assignment statements often have this form:
!
!
!
!
!

• C/C++ offers shorthand for these:

number = number + 1; //add 1 to number!
total = total + x; //add x to total!
y = y / 2; //divide y by 2!
!
!
int number = 10;!
number = number + 1;!
cout << number << endl;

number += 1; // short for number = number+1;!
total -= x; // short for total = total-x;!
y /= 2; // short for y = y / 2;

5.1 Increment and Decrement

20

• C++ provides unary operators to increment and
decrement.
‣ Increment operator: ++

‣ Decrement operator: --

• can be used before (prefix) or after (postfix) a
variable

• Examples:
int num = 10;!
num++; //equivalent to: num = num + 1;!
num--; // equivalent to: num = num - 1;!
++num; //equivalent to: num = num + 1;!
--num; // equivalent to: num = num - 1;

Prefix vs Postfix

21

• ++ and -- operators can be used in expressions
• In prefix mode (++val, --val) the operator

increments or decrements, then returns the value
of the variable

• In postfix mode (val++, val--) the operator returns
the value of the variable, then increments or
decrements
int num, val = 12;!
cout << val++; // cout << val; val = val+1;!
cout << ++val; // val = val + 1; cout << val;!
num = --val; // val = val - 1; num = val;!
num = val--; // num = val; val = val -1;

It’s confusing, don’t do this!

3.9 More Math Library Functions

22

• These require cmath header file
• These take double as input, return a double
• Commonly used functions:

pow! ! y = pow(x,d);! returns x raised to the power d!
!
abs! ! y = abs(x);! returns absolute value of x!
!
sqrt! y = sqrt(x);! returns square root of x!
!
sin! ! y = sin(x);! returns the sine of x (in radians)!
!
etc.

3.10 Hand Tracing a Program

23

• You be the computer. Track the values of the
variables as the program executes.
‣ step through and ‘execute’ each statement, one-by-one

‣ record the contents of variables after each statement
execution, using a hand trace chart (table)

int main() {!
 double num1, num2, num3, avg;!
 cout << “Enter first number”;!
 cin >> num1;!
 cout << “Enter second number”;!
 cin >> num2;!
 cout << “Enter third number”;!
 cin >> num3;!
!
 avg = num1 + num2 + num3 / 3;!
!
 cout << “The average is ” << avg!
 << endl;!
}

num1 num2 num3 avg

? ? ? ?

? ? ? ?

10 ? ? ?

10 ? ? ?

10 20 ? ?

10 20 ? ?

10 20 30 ?

10 20 30 40

10 20 30 40

