Week 3: File I/O and Formatting

Gaddis: 3.7, 3.8, 5.11

CS 1428
Fall 2014

Jill Seaman

3.7 Formatting Output

Formatting: the way a value is printed:
» spacing
» decimal points, fractional values, number of digits

» scientific notation or decimal format

cout has a standard way of formatting values
of each data type

use “stream manipulators” to override this
they require #include <iomanip>

Formatting Output: setw

* setw is a “stream manipulator”, like endl|
* setw(n)specifies the minimum width for the
next item to be output
» cout << setw(6) << age << endl;
» printin a field at least 6 spaces wide.
» value is right justified (padded with spaces on left).

» if the value is too big to fit in 6 spaces, it is printed in full,
using more spaces.

setw: examples

* Example with no formatting:

cout << 2897 << ” ¥ << 5 << # # << 837 << endl;
cout << 34 << “ # << 7 << " " << 1623 << endl;

2897 5 837
34 7 1623

* Example using setw:

cout << setw(6) << 2897 << setw(6) << 5
<< setw(6) << 837 << endl;

cout << setw(6) << 34 << setw(6) << 7
<< setw(6) << 1623 << endl;

2897 5 837
34 7 1623

Formatting Output: setprecision

* setprecision(n) specifies the number of
significant digits to be output for floating point
values.

* it remains in effect until it is changed
* the default seems to be 6, and it rounds up

cout << 123.45678 << endl;

cout << setprecision(4);

cout << 1.3 << endl;

cout << 123.45678 << endl;

cout << setprecision(2) << 34.21;

123.457
1.3
123.5
34 5

Formatting Output: fixed

* fixed forces floating point values to be output
in decimal format, and not scientific notation.

* when used with setprecision, the value of
setprecision is used to determine the
number of digits after the decimal

cout << 12345678901.23 << endl;
cout << fixed << setprecision(2);
cout << 12345678901.23 << endl;
cout << 123.45678 << endl;

1.23457e+10
12345678901.23 Note: there is no need for showpoint
123.46 when using setprecision with fixed

6

Formatting Output: right and left

* left causes all subsequent output to be left
justified in its field

* right causes all subsequent output to be right
justified in its field. This is the default.

The examples in the
book are WRONG

double x = 146.789, y = 24.2, z = 1.783;

cout << setw(1l0) << x << endl; 146.789
cout << setw(1l0) << y << endl; 24.2
cout << setw(10) << z << endl; 1.783

double x = 146.789, y = 24.2, z = 1.783;

cout << left << setw(10) << x << endl; 146.789
24.2
cout << setw(1l0) << y << endl; e

cout << setw(1l0) << z << endl;

7

3.8 Working with characters and
string objects

» Using the >> operator to input strings (and
chars) can cause problems:

* It skips over any leading whitespace chars
(spaces, tabs, or line breaks)

* It stops reading strings when it encounters the
next whitespace character!

string name;

cout << “Please enter your name: “;

cin >> name;

cout << “Your name is “ << name << endl;

Please enter your name: Kate Smith
Your name is Kate

Using getline to input strings

» To work around this problem, you can use a

C++ function named getline.

* getline(cin,var); reads in an entire line,
including all the spaces, and stores it in a string

variable.

string name;

cout << “Please enter your name: “;
getline(cin, name);

cout << “Your name is “ << name << endl;

Please enter your name: Kate Smith
Your name is Kate Smith

Using cin.get to input chars

» To read a single character:
« Can use >>:

char ch;
cout << "Press any key to continue";
cin >> ch;

» Problem: will skip over blanks, tabs, newlines to get to the
first non-whitespace char.

» Use cin.get():

char ch;
cout << "Press any key to continue";
cin.get(ch);

» Will read the next character entered, even whitespace

10

Mixing >> with

getline and cin.get

* Mixing cin>>x with getline(cin,y) Or
cin.get(ch) in the same program can cause

input errors that are hard to detect

int number;
string name;
cout << "Enter a number: ";

cin >> number; // Read an integer
cout << "Enter a name: ";
getline(cin,name); // Read a string

cout << “Name “ << name << endl;

Enter a number: 100 Keyhoard buffar

Enter a name: Name I ll 0 I 0 I\nl | |
The program did not cin stops reading here, _ 4 getline(cin,name) then reads
allow me to type a name but does not read the \n the \n and immediately stops

character.

(name is empty)

Using cin.ignore

* cin.ignore(20,’'\n’) skips the next 20

characters, or until “\n’ is encountered.

» Use it before a getline to consume the newline so it will

start reading characters from the following line.

int number;

string name;

cout << "Enter a number: ";

cin >> number; // Read an integer
cin.ignore(20,'\n’); // skip the newline
cout << "Enter a name: ";
getline(cin,name); // Read a string
cout << “Name “ << name << endl;

Enter a number: 100
Enter a name: Jane Doe
Name Jane Doe

5.11 Using Files for Data Storage

 Variables are stored in Main Memory/RAM

» values are lost when program is finished executing

 To preserve the values computed by the
program: save them to a file

* Files are stored in Secondary Storage

* To have your program manipulate values stored
in a file, they must be input into variables first.

File Stream Objects

File stream data types:
» ifstream

» ofstream
* USe #include <fstream> for these

objects of type ofstream can output (write)
values to a file. (like cout)

objects of type ifstream can input (read)
values from a file. (like cin)

Steps to File 1/0O

Define a file stream variable.

Open the file

Use the file

» ifstream: read values from the file

» ofstream: store (write) values to the file

Close the file

Define and open file stream objects

» To input from a file, declare an ifstream variable
and open a file by its name.

ifstream fin;
fin.open(“mydatafile.txt”);

» If the file “mydatafile.txt” does not exist, it will cause an error.

* To output to a file, declare an ofstream variable,
and open a file by its name.

ofstream fout;
fout.open(“myoutputfile.txt”);

» If the file “myoutputfile.txt” does not exist, it will be created.

» If it does exist, it will be overwritten

* The stream variable is associated with thme file.

Closing file stream objects

* To close a file stream when you are done
reading/writing:

fin.close();
fout.close();

* Not required, but good practice.

Writing to Files

» Use the stream insertion operator on the file
output stream variable:

#include <iostream>
#include <fstream>
using namespace std;

Output
int main() { demofile.txt:

ofstream fout; Age i 20
outFile.open(“demofile.txt”);

int age;
cout << "“Enter your age: “;
cin >> age;

fout << “Age is: " << age << endl;
fout.close();
return 0;

Reading from Files

» Use the stream extraction operator on the file

input stream variable to copy data into variable:

#include <iostream> Names.txt: | Tom
#include <fstream> Dick
using namespace std; Harry

int main() {
string name;

ifstream fin;
fin.open(“Names.txt"”); Screen output: | rom
fin >> name;

cout << name << endl;
fin.close();

Reading from files

* When opened, file stream's read position points
to first character in file.

« extraction operator (>>) starts at read position
and skips whitespace to read data into the
variable.

» The read position then points to whitespace after
the value it just read.

» The next extraction (>>) starts from the new read
position.

» Just like with cin.

20

