
Week 3: File I/O and Formatting

Gaddis: 3.7, 3.8, 5.11
!

CS 1428
Fall 2014

!
Jill Seaman

1

3.7 Formatting Output

! Formatting: the way a value is printed:
‣ spacing

‣ decimal points, fractional values, number of digits

‣ scientific notation or decimal format!

! cout has a standard way of formatting values
of each data type

! use “stream manipulators” to override this
! they require #include <iomanip>

2

Formatting Output: setw

3

• setw is a “stream manipulator”, like endl
• setw(n)specifies the minimum width for the
next item to be output
‣ cout << setw(6) << age << endl;!

‣ print in a field at least 6 spaces wide.

‣ value is right justified (padded with spaces on left).

‣ if the value is too big to fit in 6 spaces, it is printed in full,
using more spaces.

setw: examples

4

• Example with no formatting:
!
!
!

• Example using setw:

cout << 2897 << “ “ << 5 << “ “ << 837 << endl;!
cout << 34 << “ “ << 7 << “ “ << 1623 << endl;

cout << setw(6) << 2897 << setw(6) << 5 !
 << setw(6) << 837 << endl;!
cout << setw(6) << 34 << setw(6) << 7 !
 << setw(6) << 1623 << endl;

2897 5 837!
34 7 1623

 2897 5 837!
 34 7 1623

Formatting Output: setprecision

5

• setprecision(n) specifies the number of
significant digits to be output for floating point
values.

• it remains in effect until it is changed
• the default seems to be 6, and it rounds up

cout << 123.45678 << endl;!
cout << setprecision(4);!
cout << 1.3 << endl;!
cout << 123.45678 << endl;!
cout << setprecision(2) << 34.21;

123.457
1.3
123.5
34

Formatting Output: fixed

6

• fixed forces floating point values to be output
in decimal format, and not scientific notation.

• when used with setprecision, the value of
setprecision is used to determine the
number of digits after the decimal

cout << 12345678901.23 << endl;!
cout << fixed << setprecision(2); !
cout << 12345678901.23 << endl;!
cout << 123.45678 << endl;

1.23457e+10!
12345678901.23!
123.46

Note: there is no need for showpoint
when using setprecision with fixed

Formatting Output: right and left

7

• left causes all subsequent output to be left
justified in its field

• right causes all subsequent output to be right
justified in its field. This is the default.

 double x = 146.789, y = 24.2, z = 1.783; !
 cout << setw(10) << x << endl; !
 cout << setw(10) << y << endl; !
 cout << setw(10) << z << endl;

 146.789!
 24.2!
 1.783

 double x = 146.789, y = 24.2, z = 1.783; !
 cout << left << setw(10) << x << endl; !
 cout << setw(10) << y << endl; !
 cout << setw(10) << z << endl;

146.789 !
24.2 !
1.783

The examples in the
book are WRONG

3.8 Working with characters and
string objects

8

! Using the >> operator to input strings (and
chars) can cause problems:

! It skips over any leading whitespace chars
(spaces, tabs, or line breaks)

! It stops reading strings when it encounters the
next whitespace character!
string name;!
cout << “Please enter your name: “;!
cin >> name;!
cout << “Your name is “ << name << endl;

Please enter your name: Kate Smith!
Your name is Kate

Using getline to input strings

9

! To work around this problem, you can use a  
C++ function named getline.

! getline(cin,var); reads in an entire line,
including all the spaces, and stores it in a string
variable.

string name;!
cout << “Please enter your name: “;!
getline(cin, name);!
cout << “Your name is “ << name << endl;

Please enter your name: Kate Smith!
Your name is Kate Smith

Using cin.get to input chars

10

• To read a single character:
• Can use >>:
!

!
‣ Problem: will skip over blanks, tabs, newlines to get to the

first non-whitespace char.

• Use cin.get():
!

!
‣ Will read the next character entered, even whitespace

char ch;!
cout << "Press any key to continue";!
cin >> ch;

char ch;!
cout << "Press any key to continue";!
cin.get(ch);

Mixing >> with
getline and cin.get

11

! Mixing cin>>x with getline(cin,y) or
cin.get(ch) in the same program can cause
input errors that are hard to detect
int number;!
string name;!
cout << "Enter a number: "; !
cin >> number; // Read an integer !
cout << "Enter a name: "; !
getline(cin,name); // Read a string !
cout << “Name “ << name << endl;

Enter a number: 100!
Enter a name: Name

getline(cin,name) then reads
the \n and immediately stops
(name is empty)

The program did not
allow me to type a name

Using cin.ignore

12

! cin.ignore(20,’\n’) skips the next 20
characters, or until ’\n’ is encountered.

! Use it before a getline to consume the newline so it will
start reading characters from the following line.
int number;!
string name;!
cout << "Enter a number: "; !
cin >> number; // Read an integer!
cin.ignore(20,’\n’); // skip the newline!
cout << "Enter a name: "; !
getline(cin,name); // Read a string !
cout << “Name “ << name << endl;

Enter a number: 100!
Enter a name: Jane Doe!
Name Jane Doe

5.11 Using Files for Data Storage

13

! Variables are stored in Main Memory/RAM
‣ values are lost when program is finished executing

! To preserve the values computed by the
program: save them to a file

! Files are stored in Secondary Storage
! To have your program manipulate values stored

in a file, they must be input into variables first.

File Stream Objects

14

! File stream data types:
‣ ifstream

‣ ofstream

! use #include <fstream> for these
! objects of type ofstream can output (write)

values to a file. (like cout)
! objects of type ifstream can input (read)

values from a file. (like cin)

Steps to File I/O

• Define a file stream variable.
!

• Open the file
!

• Use the file
‣ ifstream: read values from the file

‣ ofstream: store (write) values to the file

!

• Close the file
15

Define and open file stream objects

16

! To input from a file, declare an ifstream variable
and open a file by its name.
!
‣ If the file “mydatafile.txt” does not exist, it will cause an error.

! To output to a file, declare an ofstream variable,
and open a file by its name.
!
‣ If the file “myoutputfile.txt” does not exist, it will be created.

‣ If it does exist, it will be overwritten

! The stream variable is associated with the file.

ifstream fin;!
fin.open(“mydatafile.txt”);

ofstream fout;!
fout.open(“myoutputfile.txt”);

Closing file stream objects

17

! To close a file stream when you are done
reading/writing:
!

!
! Not required, but good practice.

fin.close();!
fout.close();

Writing to Files

18

• Use the stream insertion operator on the file
output stream variable:
#include <iostream>!
#include <fstream>!
using namespace std;!
!
int main() {!
 ofstream fout;!
 outFile.open(“demofile.txt”);!
 !
 int age;!
 cout << “Enter your age: “;!
 cin >> age;!
!
 fout << “Age is: “ << age << endl;!
 fout.close();!
 return 0;!
}

Age is: 20

Output
demofile.txt:

Reading from Files

19

• Use the stream extraction operator on the file
input stream variable to copy data into variable:
#include <iostream>!
#include <fstream>!
using namespace std;!
!
int main() {!
 string name;!
!
 ifstream fin;!
 fin.open(“Names.txt”);!
 fin >> name;!
!
 cout << name << endl;!
 fin.close();!
}

Tom
Dick
Harry

Names.txt:

TomScreen output:

Reading from files

20

• When opened, file stream's read position points
to first character in file.

• extraction operator (>>) starts at read position
and skips whitespace to read data into the
variable.

• The read position then points to whitespace after
the value it just read.

• The next extraction (>>) starts from the new read
position.

• Just like with cin.

