
Week 4: If statements and  
boolean expressions

Gaddis: 4.1-4.9
!

CS 1428
Fall 2014

!
Jill Seaman

1

Straight-line code

! So far all of our programs have followed this
basic format:
‣ Input some values

‣ Do some computations

‣ Output the results

!
! The statements are executed in a sequence,

first to last.

2

Decisions

3

• Sometimes we want to be able to decide
which of two statements to execute:

monthly sales
> $3,000

fee is 2.5%fee is 2.9%

YN

Relational Expressions

4

! Making decisions require being able to ask “Yes”
or “No” questions.

! Relational expressions evaluate to true or false.
! Also called:
‣ logical expressions

‣ conditional expressions

‣ boolean expressions

Relational Expressions

5

! Boolean literals:
!

!

!
! Boolean variables

!bool isPositive = true;!
bool found = false;

true!
false

true evaluates to true

isPositive evaluates to true
found evaluates to false

4.1 Relational Operators

6

! Binary operators used to compare expressions:
< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equals (note: do not use =) !!

!= Not Equals

Relational Expressions

7

! Examples:
!

!

!

!
! Can assign relational expressions to variables:
!

!

bool isPositive;!
int x;!
cin >> x;!
isPositive = x > 0;

int x=6;!
int y=10;!
!
a. x == 5 evaluates to ___false___!
b. 7 <= x + 2 evaluates to __________!
c. y – 3 > x evaluates to __________!
d. x != y evaluates to __________
d. true evaluates to ___true____

if the user types: 25!
isPositive evaluates to ______

Relational Operator Precedence

8

! Relational operators are LOWER than
arithmetic operators:

!

!

!
! Relational operators are HIGHER than

assignment:
!

!

int x, y;!
...!
bool t1 = x > 7; // > then =!
bool t2 = x * 5 >= y + 10; // *, +, >=, =

int x, y;!
!
... x < y -10 ... // minus happens first!
... x * 5 >= y + 10 ... // mult, then plus, then >=

4.4 if-else statement

9

• if-else statement is used to make decisions
!

!

!
• expression is evaluated

‣ If it is true, then statement1 is executed. 
(statement2 is skipped).

‣ If it is false, then statement2 is executed  
(statement1 is skipped).

if (expression)!
 statement1!
else!
 statement2

if-else example

10

double rate;!
double monthlySales;!
 !
cout << "Enter monthly sales last month: " ;!
cin >> monthlySales;!
 !
if (monthlySales > 3000)!
 rate = .025;!
else!
 rate = .029;!
 !
double price;!
cout << "Enter selling price of item: " ;!
cin >> price;!
double commission = (price + 3.99) * rate;!
cout << "Commission: $" << commission << endl;

Enter monthly sales last month: 3025!
Enter selling price of item: 100!
Commission: $2.59975

if-else structure

11

Notice:
!

!

!

• relational expression is in parentheses
• NO semi-colon after expression, nor the else
• Good style: indent the statements!!
• The semi-colons belong to the statements,  

not to the if-else

if (monthlySales > 3000)!
 rate = .025;!
else!
 rate = .029;

4.3 The block statement

12

! a block (or a compound statement) is a set of
statements inside braces: 
 
 

 

! This groups several statements into a single
statement.

! This allows us to use multiple statements when by
rule only one is allowed.

{ int x;!
 cout << “Enter a value for x: “ << endl;!
 cin >> x;!
 cout << “Thank you.” << endl;!
}

if-else with blocks

13

! We can use blocks to put more than one statement
in the branches of the if-else:

int number;!
cout << “Enter a number” << endl;!
cin >> number;!
!
if (number % 2 == 0) !
{!
 number = number / 2;!
 cout << “Even”;!
}!
else!
{!
 number = (number – 1) / 2;!
 cout << “Odd”;!
}

4.2 if statement

14

• The else part is optional:
!

!

!
• expression is evaluated

‣ If it is true, then statement is executed. 

‣ If it is false, then statement is skipped  

if (expression)!
 statement!

if statement example

15

! Example: input validation

cout << “Enter a positive number: ”;!
cin >> x;!
if (x < 0)!
{!
 cout << “That number is negative. ”!
 << “Please enter a positive number: “;!
 cin >> x;!
} !
!
//do something with x here

4.5 Nested if statements

16

! if-else is a statement. It can occur as a branch
of an if-else statement.

Nested if statements

17

! if-else is a statement. It can occur as a branch
of an if-else statement.

char bornInUSA;!
int age;!
cout << “Were you born in the USA (Y/N)?: “ ;!
cin >> bornInUSA;!
cout << “Please enter your age: “;!
cin >> age;!
!
if (bornInUSA == 'Y')!
 if (age >= 35)!
 cout << “You qualify to run for President\n”;!
 else!
 cout << “You are too young to run for President\n”;!
else!
 cout << “You must have been born in the US in order “ !
 << “to run for President” << endl;

Nested if statements

18

! if-else is a statement. It can occur as a branch
of an if-else statement.

char bornInUSA;!
int age;!
cout << “Were you born in the USA (Y/N)?: “ ;!
cin >> bornInUSA;!
cout << “Please enter your age: “;!
cin >> age;!
!
if (bornInUSA == 'Y')!
 if (age >= 35)!
 cout << “You qualify to run for President\n”;!
 else!
 cout << “You are too young to run for President\n”;!
else!
 cout << “You must have been born in the US in order “ !
 << “to run for President” << endl;

Common nested if pattern

19

! Determine letter grade from test score:
!

!

!

!

!

!

!
! Note the braces are actually optional here!

if (testScore < 60)!
 grade = 'F';!
else {!
 if (testScore < 70)!
 grade = 'D';!
 else {!
 if (testScore < 80)!
 grade = 'C';!
 else {!
 if (testScore < 90)!
 grade = 'B';!
 else!
 grade = 'A';!
 }!
 }!
 }

If we are in this
else branch, what
do we know about
the value of
testScore?

4.6 The if-else if Statement

20

! Not really a different statement, just a different
way of indenting the nested if statement from
the previous slide:
!

!

!

!

!
! removed braces, put “if (…)” on previous line
! eliminated nested indentation.

if (testScore < 60)!
 grade = 'F';!
else if (testScore < 70)!
 grade = 'D';!
else if (testScore < 80)!
 grade = 'C';!
else if (testScore < 90)!
 grade = 'B';!
else!
 grade = 'A';

4.8 Logical Operators

21

! Used to create relational expressions from other
relational expressions:
‣ && AND (binary)

a && b is true only when both a and b are true 

‣ || OR (binary)

a || b is true whenever either a or b is true  

‣ ! NOT (unary)

!a is true when a is false

Logical Operators

22

! Examples
int x=6;!
int y=10;!
!
a. x == 5 && y <= 3 false && false is false!
b. x > 0 && x < 10 true && true is true!
c. x == 10 || y == 10 false || true is true!
d. x == 10 || x == 11 ___ || ___ is ____!
e. !(x > 0) !true is _____!
f. !(x > 6 || y == 10) !(false || true) is ____!
!
bool flag;!
flag = (x > 0 && x < 25);!
g. !flag!
h. flag || x < 100

Logical Operator Precedence

23

! ! is higher than most operators, so use
parentheses: 

!
! && is higher than ||
 
 
 

! && and || are lower than arithmetic+relational
operators: parens not usually needed

int x, y;!
bool flag;!
!
... flag || x * 5 >= y + 10 && x == 5!
!
 // which op is first? second? etc?

int x;!
!
... !(x < 0 && x > -10) ... // <, >, &&, !

4.9 Checking Numeric Ranges

24

! We want to know if x is in the range from 1 to 10
(inclusive)
a. if (1 <= x <= 10) //as in math class !
 cout << “YES” << endl;  
 !
 //WRONG: ((1<=x) <=10) (assume x is -5)!
 // => (false <= 10)!
 // => (0 < = 10) is true!
 
b. if (1 <= x && x <= 10) !
 cout << “YES” << endl;!
!
 -check: x=0? (1<=0 && 0<=10) => false && true !
!
 -check: x=5? (1<=5 && 5<=10) => true && true!
!
 -check: x=100? (1<=100 && 100<=10) => ??

