
Week 6: Intro to Loops

Gaddis: 5.2-6
!

CS 1428
Fall 2014

!
Jill Seaman

1

Control Flow
 (order of execution)

2

• So far, control flow in our programs has
included:
‣ sequential processing (1st statement, then 2nd statement…)

‣ branching (conditionally skip some statements). 

• Chapter 5 introduces loops, which allow us to
conditionally repeat execution of some
statements.
‣ while loop

‣ do-while loop

‣ for loop

5.2 The while loop

3

! As long as the relational expression is true, repeat
the statement

while syntax and semantics

4

• The while statement is used to repeat
statements:
!

!

• How it works:
‣ expression is evaluated:

‣ If it is true, then statement is executed, then it starts over
(and expression is evaluated again).

‣ If (when) it is false, then statement is skipped  
(and the loop is done).

while (expression)!
 statement

while example

5

• Example:
!

!

!

!

!

!

• Output

int number = 1;!
!
while (number <= 3)!
{!
 cout << “Student” << number << endl;!
 number = number + 1;!
}!
!
cout << “Done” << endl;

Student1!
Student2!
Student3!
Done

Hand trace!

5.3 Using while for input validation

6

• Inspect user input values to make sure they are
valid.

• If not valid, ask user to re-enter value:
int number;!
!
cout << “Enter a number between 1 and 10: “;!
cin >> number;!
!
while (number < 1 || number > 10) {!
 cout << “Please enter a number between 1 and 10: “;!
 cin >> number;!
}!
!
// Do something with number here  

Don’t forget to input
the next value

Explain the valid
values in the prompt

This expression is true when
number is OUT of range.

Input Validation

7

! Checking for valid characters:

char answer;!
!
cout << “Enter the answer to question 1 (a,b,c or d): “;!
cin >> answer;!
!
while (answer != ‘a’ && answer != ‘b’ && !
 answer != ‘c’ && answer != ‘d’) !
{!
 cout << “Please enter a letter a, b, c or d: “;!
 cin >> answer;!
}!
!
// Do something with answer here  

5.4 Counters

! Counter: a variable that is incremented (or
decremented) each time a loop repeats.

! Used to keep track of the number of iterations
(how many times the loop has repeated).
!

! Must be initialized before entering loop!!!!

8

Counters

9

! Example (how many times do they enter an
invalid number?):
int number;!
int count = 0;!!
cout << “Enter a number between 1 and 10: “;!
cin >> number;!!
while (number < 1 || number > 10) {!
 count = count + 1;!
 cout << “Please enter a number between 1 and 10: “;!
 cin >> number;!
}!!
cout << count << “ invalid numbers entered “ << endl;!!
// Do something with number here  

Counters

10

! Example, using the counter to control how
many times the loop iterates:
!

!

!

!
! Output:

cout << “Number Number Squared” << endl;!
cout << “------ --------------” << endl;!
!
int num = 1; // counter variable!
while (num <= 8) {!
 cout << num << “ “ << (num * num) << endl;!
 num = num + 1; // increment the counter!
}

Number Number Squared!
------ --------------!
1 1!
2 4!
3 9!
4 16!
5 25!
6 36!
7 49!
8 64

5.5 The do-while loop

11

! Execute the statement(s), then repeat as long as
the relational expression is true.

do-while syntax and semantics

12

• The do-while loop has the test expression at
the end:
!

!

• How it works:
‣ statement is executed.
‣ expression is evaluated:

‣ If it is true, then it starts over (and statement is executed
again).

‣ If (when) it is false, the loop is done.

• statement always executes at least once.

do!
 statement!
while (expression);

Don’t forget the
semicolon at the end

do-while example

13

• Example:
!

!

!

!

!

!

• Output

int number = 1;!
do!
{!
 cout << “Student” << number << endl;!
 number = number + 1;!
} while (number <= 3);!
!
cout << “Done” << endl;

Student1!
Student2!
Student3!
Done

do-while with menu

14

char choice;!
!
do {!
 cout << “A: Make a reservation.” << endl;!
 cout << “B: View flight status.” << endl;!
 cout << “C: Check-in for a flight.” << endl;!
 cout << “D: Quit the program.” << endl;!
 cout << “Enter your choice: “;!
 !
 cin >> choice;!
!
 switch (choice) {!
 case ‘A’: // code to make a reservation!
 break;!
 case ‘B’: // code to view flight status!
 break;!
 case ‘C’: // code to process check-in!
 break;!
 }!
} while(choice != ‘D’);

Different ways to control the loop
! Conditional loop: body executes as long as a

certain condition is true
‣ input validation: loops as long as input is invalid

! Count-controlled loop: body executes a specific
number of times using a counter
‣ actual count may be a literal, or stored in a variable.

! Count-controlled loop follows a pattern:
‣ initialize counter to zero (or other start value).

‣ test counter to make sure it is less than count.

‣ update counter during each iteration. 15

5.6 The for loop

16

• The for statement is used to easily implement a
count-controlled loop.
!

!

• How it works:
‣ expr1 is executed (initialization)
‣ expr2 is evaluated (test)

‣ If it is true, then statement is executed,  
then expr3 is executed (update),  
then start over.

‣ If (when) it is false, then statement is skipped  
(and the loop is done).

for (expr1; expr2; expr3)!
 statement

The for loop flow chart

17

expr1

expr2 expr3statement

for (expr1; expr2; expr3)!
 statement

The for loop and the while loop

18

• The for statement
!

!

• is equivalent to the following code using a while
statement:

for (expr1; expr2; expr3)!
 statement

expr1; // initialize!
while (expr2) { // test!
 statement!
 expr3; // update!
}

for loop example

19

• Example:
!

!

!

!

!

!

• Output

int number;!
for (number = 1; number <= 3; number++)!
{!
 cout << “Student” << number << endl;!
}!
!
cout << “Done” << endl;

Student1!
Student2!
Student3!
Done

Equivalent to
number = number + 1

Note: no semicolon

Counters: redo

20

! Example, using the counter to control how
many times the loop iterates:
!
!

!

!
! Rewritten using a for loop:

cout << “Number Number Squared” << endl;!
cout << “------ --------------” << endl;!
!
int num = 1; // counter variable!
while (num <= 8) {!
 cout << num << “ “ << (num * num) << endl;!
 num = num + 1; // increment the counter!
}

cout << “Number Number Squared” << endl;!
cout << “------ --------------” << endl;!
!
int num;!
for (num = 1; num <= 8; num++) !
 cout << num << “ “ << (num * num) << endl;!

Define variable in init-expr

21

• You may define the loop counter variable inside
the for loop’s initialization expression:
!

!

!

!

• Do NOT try to access x outside the loop  
(the scope of x is the for loop statement ONLY)

• What is the output of the for loop?

for (int x = 10; x > 0; x=x-2) !
 cout << x << endl;!
!
cout << x << endl; //ERROR, can’t use x here

Hand trace!

User-controlled count

22

• You may use value input by the user to control
the number of iterations:
!

!

!

!

!

!

• How many times does the loop iterate?

int maxCount;!
cout << “How many squares do you want?” << endl;!
cin >> maxCount;!
!
cout << “Number Number Squared” << endl;!
cout << “------ --------------” << endl;!
!
for (int num = 1; num <= maxCount; num++) !
 cout << num << “ “ << (num * num) << endl;!

The exprs in the for are optional

23

• You may omit any of the three exprs in the for
loop header
!

!

!

!

!

!

• Style: use a while loop for something like this.
• When expr2 is missing, it is true by default.

int value, incr;!
cout << “Enter the starting value: “;!
cin >> value;!
!
for (; value <= 100;) !
{!
 cout << “Please enter the next increment amount: “;!
 cin >> incr;!
 value = value + incr;!
 cout << value << endl;!
}

