
1

Trees
Week 12 

Gaddis: 20 
Weiss: 21.1-3 

CS 5301 
Fall 2014 

Jill Seaman
2

Tree: 
non-recursive definition

! Tree: set of nodes and directed edges 
- root: one node is distinguished as the root 
- Every node (except root) has exactly exactly one 

edge coming into it. 
- Every node can have any number of edges going 

out of it (zero or more). 
! Parent: source node of directed edge 
! Child: terminal node of directed edge
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Tree: 
example

! edges are directed down (source is higher) 
! D is the parent of H.  Q is a child of J. 
! Leaf: a node with no children (like H and P) 
! Sibling: nodes with same parent (like K,L,M) 4

Tree: 
recursive definition

! Tree: 
- is empty or  
- consists of a root node and zero or more 

nonempty subtrees, with an edge from the root to 
each subtree (a subtree is a Tree).
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Tree terms

! Path: sequence of (directed) edges 
! Length of path: number of edges on the path 
! Depth of a node: length of path from root to 

that node. 
! Height of a node: length of longest path from 

node to a leaf.
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Tree traversal
! Tree traversal: operation that converts the 

values in a tree into a list 
- Often the list is output 

! Pre-order traversal 
- Print the data from the root node 
- Do a pre-order traversal on first subtree 
- Do a pre-order traversal on second subtree 

- Do a preorder traversal on last subtree
. . .

This is recursive.  What’s the base case?
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Preorder traversal: 
Expression Tree

! print node value, process left tree, then right 

! prefix notation (for arithmetic expressions)
+ + a * b c * + * d e f g
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Postorder traversal: 
Expression Tree

! process left tree, then right, then node 

! postfix notation (for arithmetic expressions)
a b c * + d e * f + g * +
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Inorder traversal: 
Expression Tree

! IF each node has 0 to 2 children, you can do inorder traversal 
! process left tree, print node value, then process right tree 

! infix notation (for arithmetic expressions)
a + b * c + d * e + f * g
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Binary Trees

! Binary Tree: a tree in which no node can 
have more than two children. 

! height: shortest:  log2(n)  tallest: n
n is the number of  
nodes in the tree.
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Binary Trees: implementation

! Structure with a data value, and a pointer to the 
left subtree and another to the right subtree. 

! Like a linked list, but two “next” pointers. 
! This structure can be used to represent any 

binary tree.

struct TreeNode {
  <type> data;       // the data
  TreeNode *left;  // left subtree
  TreeNode *right; // right subtree
};
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Binary Search Trees

! A special kind of binary tree 
! A data structure used for efficient searching, 

insertion, and deletion. 
! Binary Search Tree property: 

- All the values in the left subtree are smaller than 
the value at X. 
- All the values in the right subtree are larger than 

the value at X. 
! Not all binary trees are binary search trees

For every node X in the tree:



13

Binary Search Trees

A binary search tree Not a binary search tree

14

Binary Search Trees
An inorder traversal of a BST shows the values in 
sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20
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Binary Search Trees: operations
! insert(x) 
! remove(x)   (or delete) 
! isEmpty()   (returns bool) 

! find(x)         (returns bool) 
! findMin()     (returns <type>) 
! findMax()    (returns <type>)
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BST: find(x)

! if we are searching for 15 we are done. 
! If we are searching for a key < 15, then we 

should search in the left subtree. 
! If we are searching for a key > 15, then we 

should search in the right subtree.

Recursive Algorithm:



! compare 9 to 15, go left 
! compare 9 to 6, go right 
! compare 9 to 7 go right 
! compare 9 to 13 go left 
! compare 9 to 9: found
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BST: find(x)

Example: search for 9

! Pseudocode 
! Recursive
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BST: find(x)

bool find (<type> x, TreeNode t) {

   if (isEmpty(t))
       return false  
   
   if (x < value(t))
       return find (x, left(t))
   
   if (x > value(t))
       return find (x, right(t))

   return true  // x == value(t)

}

Base case

! Smallest element is found by always taking the left 
branch. 

! Pseudocode 
! Recursive 
! Tree must not be empty
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BST: findMin()

<type> findMin (TreeNode t) {
   assert (!isEmpty(t))
   
   if (isEmpty(left(t)))
       return value(t)
   
   return findMin (left(t))

} 20

BST: insert(x)
! Algorithm is similar to find(x) 
! If x is found, do nothing (no duplicates in tree) 
! If x is not found, add a new node with x in place of 

the last empty subtree that was searched.

Inserting 13:



! Pseudocode 
! Recursive
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BST: insert(x)

bool insert (<type> x, TreeNode t) {

   if (isEmpty(t))
       make t’s parent point to new TreeNode(x)  
   
   else if (x < value(t))
       insert (x, left(t))
   
   else if (x > value(t))
       insert (x, right(t))

   //else x == value(t), do nothing, no duplicates

}

! Append x to the end of a singly linked list:  
- Pass the node pointer by reference 
- Recursive
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Linked List example:

void List::append (double x) { 
   append(x, head);
}

void List::append (double x, Node *& p) {
         
   if (p == NULL) {
       p = new Node();
       p->data = x;
       p->next = NULL;
   }   
   else 
      append (x, p->next);
}

Public function

Private recursive function
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BST: remove(x)
! Algorithm is starts with finding(x) 
! If x is not found, do nothing 
! If x is found, remove node carefully. 
- Must remain a binary search tree (smallers on left, biggers 

on right).
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BST: remove(x)
! Case 1: Node is a leaf 
- Can be removed without violating BST property 

! Case 2: Node has one child 
- Make parent pointer bypass the Node and point to child

Does not matter 
if the child is the 
left or right child 
of deleted node
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BST: remove(x)
! Case 3: Node has 2 children, strategy #1 (Weiss) 
- Replace it with the minimum value in the right subtree 
- Remove minimum in right: 

❖ will be a leaf (case 1), or have only a right subtree (case 2) 
--cannot have left subtree, or it’s not the minimum

remove(2): replace it with the 
minimum of its right subtree (3) 
and delete that node.
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BST: remove(x)
! Case 3: Node has 2 children, strategy #2 (Gaddis) 
- Find minimum node in right subtree 

--cannot have left subtree, or it’s not the minimum 
- Move original node’s left subtree to be the left subtree of this 

node. 
- Make pointer to original node point to its right subtree.

find minimum of 2’s right 
subtree (3) and move 2’s left 
subtree (1) to be it’s new left. 
Remove 2 (make 6 point to 5).
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Binary heap data structure

! A binary heap is a special kind of binary tree 
- has a restricted structure (must be complete) 
- has an ordering property (parent value is 

smaller than child values)  
- NOT a Binary Search Tree! 

! Used in the following applications 
- Priority queue implementation: supports 

enqueue and deleteMin operations in O(log N) 
- Heap sort: another O(N log N) sorting algorithm.
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Binary Heap: 
structure property

! Complete binary tree: a tree that is 
completely filled 
- every level except the last is completely filled. 
- the bottom level is filled left to right (the leaves 

are as far left as possible).



29

Complete Binary Trees

! A complete binary tree can be easily stored in 
an array 
- place the root in position 1 (for convenience)
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Complete Binary Trees 
Properties

! In the array representation: 
- put root at location 1 
- use an int variable (size) to store number of nodes 
- for a node at position i: 
- left child at position 2i           (if 2i <= size, else i is leaf) 
- right child at position 2i+1  (if 2i+1 <= size, else i is leaf)  
- parent is in position floor(i/2) (or use integer division)
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Binary Heap: 
ordering property

! In a heap, if X is a parent of Y, value(X) is less 
than or equal to value(Y). 
- the minimum value of the heap is always at the 

root.

! First: add a node to tree. 
- must be placed at next available location, size+1, 

in order to maintain a complete tree. 
! Next: maintain the ordering property: 
- if x is greater than its parent: done 
- else swap with parent,  repeat 

! Called “percolate up” or “reheap up” 
! preserves ordering property 
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Heap: insert(x)
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Heap: insert(x)
! Minimum is at the root, removing it leaves a hole. 
- The last element in the tree must be relocated. 

! First: move last element up to the root 
! Next: maintain the ordering property, start with root: 
- if both children are greater than the parent: done 
- otherwise, swap the smaller of the two children with 

the parent, repeat 
! Called “percolate down” or “reheap down” 
! preserves ordering property  
! O(log n)
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Heap: deleteMin()

35

Heap: deleteMin()


