
1

Trees
Week 12

Gaddis: 20
Weiss: 21.1-3

CS 5301
Fall 2014

Jill Seaman
2

Tree:
non-recursive definition

! Tree: set of nodes and directed edges
- root: one node is distinguished as the root
- Every node (except root) has exactly exactly one

edge coming into it.
- Every node can have any number of edges going

out of it (zero or more).
! Parent: source node of directed edge
! Child: terminal node of directed edge

3

Tree:
example

! edges are directed down (source is higher)
! D is the parent of H. Q is a child of J.
! Leaf: a node with no children (like H and P)
! Sibling: nodes with same parent (like K,L,M) 4

Tree:
recursive definition

! Tree:
- is empty or
- consists of a root node and zero or more

nonempty subtrees, with an edge from the root to
each subtree (a subtree is a Tree).

5

Tree terms

! Path: sequence of (directed) edges
! Length of path: number of edges on the path
! Depth of a node: length of path from root to

that node.
! Height of a node: length of longest path from

node to a leaf.

6

Tree traversal
! Tree traversal: operation that converts the

values in a tree into a list
- Often the list is output

! Pre-order traversal
- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree 

- Do a preorder traversal on last subtree
. . .

This is recursive. What’s the base case?

7

Preorder traversal:
Expression Tree

! print node value, process left tree, then right

! prefix notation (for arithmetic expressions)
+ + a * b c * + * d e f g

8

Postorder traversal:
Expression Tree

! process left tree, then right, then node

! postfix notation (for arithmetic expressions)
a b c * + d e * f + g * +

9

Inorder traversal:
Expression Tree

! IF each node has 0 to 2 children, you can do inorder traversal
! process left tree, print node value, then process right tree

! infix notation (for arithmetic expressions)
a + b * c + d * e + f * g

10

Binary Trees

! Binary Tree: a tree in which no node can
have more than two children.

! height: shortest: log2(n) tallest: n
n is the number of
nodes in the tree.

11

Binary Trees: implementation

! Structure with a data value, and a pointer to the
left subtree and another to the right subtree.

! Like a linked list, but two “next” pointers.
! This structure can be used to represent any

binary tree.

struct TreeNode {
 <type> data; // the data
 TreeNode *left; // left subtree
 TreeNode *right; // right subtree
};

12

Binary Search Trees

! A special kind of binary tree
! A data structure used for efficient searching,

insertion, and deletion.
! Binary Search Tree property:

- All the values in the left subtree are smaller than
the value at X.
- All the values in the right subtree are larger than

the value at X.
! Not all binary trees are binary search trees

For every node X in the tree:

13

Binary Search Trees

A binary search tree Not a binary search tree

14

Binary Search Trees
An inorder traversal of a BST shows the values in
sorted order

Inorder traversal: 2 3 4 6 7 9 13 15 17 18 20

15

Binary Search Trees: operations
! insert(x)
! remove(x) (or delete)
! isEmpty() (returns bool)

! find(x) (returns bool)
! findMin() (returns <type>)
! findMax() (returns <type>)

16

BST: find(x)

! if we are searching for 15 we are done.
! If we are searching for a key < 15, then we

should search in the left subtree.
! If we are searching for a key > 15, then we

should search in the right subtree.

Recursive Algorithm:

! compare 9 to 15, go left
! compare 9 to 6, go right
! compare 9 to 7 go right
! compare 9 to 13 go left
! compare 9 to 9: found

17

BST: find(x)

Example: search for 9

! Pseudocode
! Recursive

18

BST: find(x)

bool find (<type> x, TreeNode t) {

 if (isEmpty(t))
 return false  

 if (x < value(t))
 return find (x, left(t))

 if (x > value(t))
 return find (x, right(t))

 return true // x == value(t)

}

Base case

! Smallest element is found by always taking the left
branch.

! Pseudocode
! Recursive
! Tree must not be empty

19

BST: findMin()

<type> findMin (TreeNode t) {
 assert (!isEmpty(t))

 if (isEmpty(left(t)))
 return value(t)

 return findMin (left(t))

} 20

BST: insert(x)
! Algorithm is similar to find(x)
! If x is found, do nothing (no duplicates in tree)
! If x is not found, add a new node with x in place of

the last empty subtree that was searched.

Inserting 13:

! Pseudocode
! Recursive

21

BST: insert(x)

bool insert (<type> x, TreeNode t) {

 if (isEmpty(t))
 make t’s parent point to new TreeNode(x)  

 else if (x < value(t))
 insert (x, left(t))

 else if (x > value(t))
 insert (x, right(t))

 //else x == value(t), do nothing, no duplicates

}

! Append x to the end of a singly linked list:
- Pass the node pointer by reference
- Recursive

22

Linked List example:

void List::append (double x) {
 append(x, head);
}

void List::append (double x, Node *& p) {

 if (p == NULL) {
 p = new Node();
 p->data = x;
 p->next = NULL;
 }
 else
 append (x, p->next);
}

Public function

Private recursive function

23

BST: remove(x)
! Algorithm is starts with finding(x)
! If x is not found, do nothing
! If x is found, remove node carefully.
- Must remain a binary search tree (smallers on left, biggers

on right).

24

BST: remove(x)
! Case 1: Node is a leaf
- Can be removed without violating BST property

! Case 2: Node has one child
- Make parent pointer bypass the Node and point to child

Does not matter
if the child is the
left or right child
of deleted node

25

BST: remove(x)
! Case 3: Node has 2 children, strategy #1 (Weiss)
- Replace it with the minimum value in the right subtree
- Remove minimum in right:

❖ will be a leaf (case 1), or have only a right subtree (case 2) 
--cannot have left subtree, or it’s not the minimum

remove(2): replace it with the
minimum of its right subtree (3)
and delete that node.

26

BST: remove(x)
! Case 3: Node has 2 children, strategy #2 (Gaddis)
- Find minimum node in right subtree 

--cannot have left subtree, or it’s not the minimum
- Move original node’s left subtree to be the left subtree of this

node.
- Make pointer to original node point to its right subtree.

find minimum of 2’s right
subtree (3) and move 2’s left
subtree (1) to be it’s new left.
Remove 2 (make 6 point to 5).

27

Binary heap data structure

! A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)
- has an ordering property (parent value is

smaller than child values)
- NOT a Binary Search Tree!

! Used in the following applications
- Priority queue implementation: supports

enqueue and deleteMin operations in O(log N)
- Heap sort: another O(N log N) sorting algorithm.

28

Binary Heap:
structure property

! Complete binary tree: a tree that is
completely filled
- every level except the last is completely filled.
- the bottom level is filled left to right (the leaves

are as far left as possible).

29

Complete Binary Trees

! A complete binary tree can be easily stored in
an array
- place the root in position 1 (for convenience)

30

Complete Binary Trees
Properties

! In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:
- left child at position 2i (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor(i/2) (or use integer division)

31

Binary Heap:
ordering property

! In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).
- the minimum value of the heap is always at the

root.

! First: add a node to tree.
- must be placed at next available location, size+1,

in order to maintain a complete tree.
! Next: maintain the ordering property:
- if x is greater than its parent: done
- else swap with parent, repeat

! Called “percolate up” or “reheap up”
! preserves ordering property

32

Heap: insert(x)

33

Heap: insert(x)
! Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated.

! First: move last element up to the root
! Next: maintain the ordering property, start with root:
- if both children are greater than the parent: done
- otherwise, swap the smaller of the two children with

the parent, repeat
! Called “percolate down” or “reheap down”
! preserves ordering property
! O(log n)

34

Heap: deleteMin()

35

Heap: deleteMin()

