
1

Sets & Hash Tables
Week 13

Weiss: 20
Main & Savitch: 3, 12.2-3

CS 5301
Fall 2014

Jill Seaman
2

What are sets?

! A set is a collection of objects of the same
type that has the following two properties:
- there are no duplicates in the collection
- the order of the objects in the collection is

irrelevant. 

! {6,9,11,-5} and {11,9,6,-5} are equivalent. 

! There is no first element, and no successor
of 9.

3

Set Operations

! Set construction
- the empty set (0 elements in the set)

! isEmpty()
- True, if the set is empty; false, otherwise.

! Insert(element)
- If element is already in the set, do nothing;

otherwise add it to the set
! Delete(element)
- If element is not a member of the set, do nothing;

otherwise remove it from the set. 4

Set Operations

! Member(element): boolean
- True, if element is a member of the set; false,

otherwise
! Union(Set1,Set2): Set
- returns a Set containing all elements of the two

Sets, no duplications.
! Intersection(Set1,Set2): Set
- returns a Set containing all elements common

to both sets.

5

Set Operations

! Difference(Set1,Set2): Set
- returns a Set containing all elements of the first

set except for the elements that are in common
with the second set.

! Subset(Set1,Set2): boolean
- True, if Set2 is a subset of Set1 (if all elements

of the Set2 are also elements of Set1).

6

Implementation
! Array of elements implementation
- each element of the set will occupy an element of

the array.
- the member (find) operation will be inefficient, must

use linear search.
! see Lab 6, exercise 1
- represented a set of integers, but called it a “Batch”
- class contained a pointer to a dynamically allocated

array of ints
! Exercise: implement all of the set operations for

this set

7

Implementation
! Boolean array implementation
- size of the array must be equal to number of all

possible elements (the universe).

- Here is the set {Monday, Wednesday, Friday}:

- if daysOfWeek[1] is true, then Monday is in the Set.

//This array will represent a set of days of the week
// (Sunday, Monday, Tuesday, . . .) 

bool daysOfWeek[7] = {false}; //sets all elements to false

FALSE TRUE FALSE TRUE FALSE TRUE FALSE

Sunday
0

Monday
1

Tuesday
2

Wednesday
3

Thursday
4

Friday
5

Saturday
6

8

Implementation
! Boolean array implementation
- need a mapping function to convert an element

of the universe to a position in the array

- if daysOfWeek[map(“Monday”)] is true, then
Monday is in the Set.

int map(string x) {
 if (x=="Sunday") return 0;
 if (x=="Monday") return 1;
 if (x=="Tuesday") return 2;
 if (x=="Wednesday") return 3;
 if (x=="Thursday") return 4;
 if (x=="Friday") return 5;
 if (x=="Saturday") return 6;
}

9

Implementation
! Boolean array implementation: member

! Boolean array implementation: union

- Exercise: implement all of the set operations for
the set implemented as a boolean array

bool member(string x) {
 int pos = map(x);
 if (0<=pos && pos<7)
 return daysOfWeek[pos];
 return false;
}

// c will be the union of a and b:
void union(bool a[], bool b[], bool c[]) {
 for (int pos=0; pos<7; pos++)
 // if either a or b is true for pos, make c true for pos
 c[pos] = (a[pos] || b[pos]);
}

10

What are hash tables?

! A Hash Table is used to implement a set (or
a search table), providing basic operations
in constant time:
- insert
- delete (optional)
- find (also called “member”)
- makeEmpty (need not be constant time)

! It uses a function that maps an object in the
set (a key) to its location in the table.

! The function is called a hash function.

41

Using a hash function

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

Empty

4501

Empty

8903

 8

10

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

HandyParts company
makes no more than 100
different parts. But the
parts all have four digit numbers.

This hash function can be used to
store and retrieve parts in an array.

Hash(partNum) = partNum % 100

42

Placing elements in the array

Use the hash function

Hash(partNum) = partNum % 100

to place the element with
part number 5502 in the
array.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

Empty

4501

Empty

8903

 8

10

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

43

Placing elements in the array

Next place part number
6702 in the array.

Hash(partNum) = partNum % 100

 6702 % 100 = 2

But values[2] is already
occupied.

 COLLISION OCCURS

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

44

How to resolve the collision?

One way is by linear probing.
This uses the following function

 (HashValue + 1) % 100

repeatedly until an empty location
is found for part number 6702.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

45

Resolving the collision

Still looking for a place for 6702
using the function

 (HashValue + 1) % 100

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

46

Collision resolved

Part 6702 can be placed at
the location with index 4.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

47

Collision resolved

Part 6702 is placed at
the location with index 4.

Where would the part with
number 4598 be placed using
linear probing?

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

6702

.

.

.

Empty

2298

3699

Empty

4501

5502

18

Hashing concepts

! Hash Table: (usually an array) where objects
are stored according to their key
- key: attribute of an object used for searching/

sorting
- number of valid keys usually greater than number

of slots in the table
- number of keys in use usually much smaller than

table size.
! Hash function: maps a key to a Table index
! Collision: when two separate keys hash to the

same location

19

Hashing concepts

! Collision resolution: method for finding an
open spot in the table for a key that has
collided with another key already in the table.

! Load Factor: the fraction of the hash table
that is full
- may be given as a percentage: 50%
- may be given as a fraction in the range from 0 to

1, as in: .5

20

Implementation
! Standard array implementation
- keys are ints:
class HashTable {
private:
 struct Entry {
 int value;
 int status; // 0 = open 1 = occupied 2 = deleted
 };
 Entry *array; //array of elements
 int size; //size of array
 int hash (int key) ; // maps key to position in array

public:
 HashTable (int); //initialize elements status to 0
 ~HashTable();

 bool find(int); //return true if int in table
 void insert (int); //add int to table
 void display(); //show elements in table
 void remove(int) //remove int from table
};

21

Hash Function
! Goals:
- computation should be fast
- should minimize collisions (good distribution)

! Some issues:
- should depend on ALL of the key  

(not just the last 2 digits or first 3 characters, which may
not themselves be well distributed)

! Final step of hash function is usually:
- temp is some intermediate result
- size is the hash table size
- ensures the value is a valid location in the table

temp % size

22

Collision Resolution:
Linear Probing

! Insert: When there is a collision, search
sequentially for the next open slot

! Find: if the key is not at the hashed location,
keep searching sequentially for it.
- if it reaches an open slot, the key is not found

! Remove: if the key is not at the hashed
location, keep searching sequentially for it.
- if the key is found, set the status to open

! Problem: Removing an element in the middle
of a chain. The Find method needs to know to
keep searching to the end of the chain.

23

Remove Solution

! Remove: if the key is not at the hashed
location, keep searching sequentially for it.
- skip deleted items and occupied items not matching the key
- if the key is found, mark it as deleted.

! Find: if the key is not at the hashed location,
keep searching sequentially for it.
- skip deleted items and occupied items not matching the key

! Insert: Use Find, if the key is NOT in the list:
Start the search again:
- skip occupied items not matching the key
- this way we can reuse the deleted spots 24

Linear Probing:
Example

! Insert: 89, 18, 49, 58, 69, hash(k) = k mod 10

49 is in 0 because
9 was full

58 is in 1 because
8, 9, 0 were full

69 is in 1 because
9, 0 were full

Probing function (attempt i): hi(K) = (hash(K) + i) % tablesize

25

Collision Resolution:
Separate chaining

! Use an array of linked lists for the hash table
! Each linked list contains all objects that hashed to that

location
- no collisions

Hash function is still:
h(K) = k % 10

26

Implementation
! Array of linked lists implementation
- The data structure:

class HashTable {
private:
 static const int SIZE = 100;
 struct Node {
 int key;
 node *nextNode;
 };
 Node* pTable[SIZE]; //array of pointers to Nodes
 . . .
};

// constr should init all pointers in the array to NULL

27

Separate Chaining
! To insert a an object:
- compute hash(k)
- insert at front of list at that location (if empty, make first node)
- (do not insert if already in the list)

! To find an object:
- compute hash(k)
- search the linked list there for the key of the object

! To delete an object:
- compute hash(k)
- search the linked list there for the key of the object
- if found, remove it

