Week 2
Branching & Looping

Gaddis: Chapters 4 & 5

CS 5301
Fall 2014

Jill Seaman

if/felse

if (expression)
statementl

else
statement2

« if and else

double rate, monthlySales;

if (monthlySales > 3000)

rate = .025;
else
rate = .029;

if (expression)
statement

* the else is optional:

otherwise statement is skipped

* if expression is true, statement 1 is executed
« if expression is false, statement2 is executed

* if expression is true, statement is executed,

3

—

== Equal to (do not use =)
1= Not equal to

> Greater than

< Lessthan

>= Greater than or equal to
<= Less than or equal to

- operator precedence:

Relational Operators

- relational operators (result is bool):

int x=90;

int n=6;

»7 < 25

» 89 == x

»x % 2 1=0

»8 + 5 * 10 <=10 * n

bool t1
bool t2

[o Which operation happens first? next? ...
+- int x, y;

<> <=>= . x<y-10 ...

== I= “es X * 5>y + 10 ..

Block or compound statement

» a set of statements inside braces:

{

int x;

cin >> x;

}

cout << “Enter a value for x: “

<< endl;

* This allows us to use multiple statements when
by rule only one is allowed.

int number;

cin >> number;
if (number % 2 == 0)
{

number = number / 2;
cout << “0";

else

{

cout << “17;

}

cout << “Enter a number” << endl;

number = (number + 1) / 2;

—

if-else is a statement.
of another if-else statement.

Nested if/else

if (testScore < 60)

It can occur as a branch

elsgr?de B This is equivalent to the code on
if (testScore < 70) the left. Itis just formatted differently
grade = 'D';
else {
if (testScore < 80) if (testScore < 60)
grade = 'C'; grade = 'F';
else { else if (testScore < 70)
if (testScore < 90) grade = 'D';
grade = 'B'; else if (testScore < 80)
else grade = 'C'
grade = 'A'; else if (testScore < 90)
} grade = 'B';
} else
} grade = 'A';

—

logical operators (values and results are bool):

Logical Operators

1 not la is true when a is false
&& and a && b istrue when both a and b are true
Il or a || b istrue when either a or b is true
operator precedence: |!
*1 %
+-
<><=>=
examples T/F?: = I=
&&
int x=6;
int y=10; I
a. x =5 && y <=3
b. x>0 & x < 10
c. x==10 || y == 10
d. x == 10 || x == 11
e. !(x >0) 6
f. (x> 6 || y == 10)

switch stmt:

if no match,

switch statement

switch (expression) {
case constant: statements

case constant: statements
default: statements

}

execution starts at the case labeled with the value of
the expression.

start at default

use break to exit switch (usually at end of statements)

example: [switch (ch) ¢

case ‘a’:

case ‘A’: cout << “Option A";
break;

case ‘b’:

case ‘B’: cout << “Option B”;
break;

default: cout << “Invalid choice”;

More assignment statements

Compound assignment

operator usage equivalent syntax:
+= X += e; X =X + e;
-= X -= e; X =X - e;
*= X *= e; X = X * e;
/= x /= e; x=x/ e;

increment, decrement

operator usage equivalent syntax:
++ X++; ++x; |x = x + 1;
- X-=; --X; |Xx = x - 1;

—

while loops

statement may be a

—

two kinds of loops

while

while (expression)

compound statement

conditional loop

execute as long as a certain condition is true

count-controlled loop:

executes a specific number of times
initialize counter to zero (or other start value).
test counter to make sure it is less than count.

update counter during each iteration.

int number = 1;

while (number <= 3)

{
cout << “Student” << number << endl;
number = number + 1; // or use number++

cout << “Done” << endl;

number is a “counter”,
it keeps track of the number of
times the loop has executed.

10

statement (a block: {statements})
if expression is true, statement is executed, repeat
Example int number;
cout << “Enter a number, 0 when finished: ”;
cin << number;
while (number != 0)
cout << “You entered ” << number << endl;
cout << “Enter the next number: ”;
cin << number;
cout << “Done” << endl;
Output: Enter a number, 0 when finished: 22
You entered 22
Enter the next number: 5
You entered 5
Enter the next number: 0 9
Done
f . statement may be a
or. for (exprl; expr2; expr3) compound statement

statement

equivalent to: |exprl;

while (expr2) {
statement
expr3;

}

(a block: {statements})

Good for implementing count-controlled loops:

pattern: for (initialize; test; update)

{

for (int number = 1; number <= 3; number++)
cout << “Student” << number << endl;

cout << “Done” << endl;

11

do-while loops

do while: |ao
statement

while (expression);

statement is executed.

statement may be a
compound statement
(a block: {statements})

if expression is true, then repeat

The test is at the end, statement ALWAYS

executes at least once.

int number;
do {

cin << number;

} while (number != 0);

cout << “Enter a number, 0 when finished: ”;

cout << “You entered ” << number << endl;

Keeping a running total (summing)
Example:

int days;
float total = 0.0; //Accumulator

cout << “How many days did you run? *“;
cin >> days;

for (int i = 1; i <= days; i++)

float miles;

cout << “Enter the miles for day ” << i << *: ”;
cin >> miles;

total = total + miles;

}

cout << “Total miles run: “ << total << endl;

—

Sentinel controlled loop

Use a special value to signify end of the data:

float total = 0.0; //Accumulator
float miles;

cout << "Enter the miles you ran each day, ";
cout << "one number per line.\n";

cout << "Then enter -1 when finished.\n";
cin >> miles;

while (miles != -1)

total = total + miles;
cin >> miles;

}

cout << "Total miles run: " << total << endl;

Sentinel value must NOT be a valid value |,

Nested loops

When one loop appears in the body of another

For every iteration of the outer loop, we do all
the iterations of the inner loop

for (row=1l; row<=3; row++) //outer

{

for (col=1l; col<=3; col++) //inner

cout << row * col << “ “;
cout << endl;

}

Output:

w N =
o BN
o o W

continue and break Statements

Use break to terminate execution of a loop

When used in a nested loop, terminates the
inner loop only.

Use continue to go to end of current loop and
prepare for next repetition

while, do-while loops: go immediately to the test,
repeat loop if test passes

for loop: immediately perform update step, then
test, then repeat loop if test passes y

