
1

Inheritance & Polymorphism

Week 7
!

Gaddis: Chapter 15
!
!

CS 5301
Fall 2014

!
Jill Seaman

2

Inheritance

• A way to create a new class from an existing class
• The new class is a specialized version of the existing

class
• Base class (or parent) – the existing class
• Derived class (or child) – inherits from the base class
• The derived class contains all the members from the

base class (in addition to the ones in the derived class).
class Student {!
!
 . . . !
!
}

class UnderGrad : public student {!
!
 . . . !
!
}Base class Derived class

3

Member Access Specification

• private: can be accessed by member functions only
• public: can be accessed by functions outside of the

class
• protected: can be accessed by member functions of

the class AND member functions of derived classes.
class Grade {!
 private:!
 char letter;!
 void calcGrade();!
 protected:!
 float score;!
 public:!
 void setScore(float);!
 float getScore();!
 char getLetter();!
}

Accessed in Grade’s member functions only

Accessed in member functions of Grade and
Grade’s derived classes only.

Accessed anywhere
4

Class Access Specification

• Determines how private, protected, and public
members of base class are inherited by the derived
class
• We will always use public.

private: x
protected: y
public: z

x is inaccessible
protected: y
public: z

public
base class

Base class members
How inherited base class members
appear in derived class

Base class Derived class

5

Class Access Specification

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade
private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

class Test : public Grade

When Test class inherits
from Grade class using
public class access, it
looks like this:

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);
 void setScore(float);
 float getScore();
 float getLetter();

An instance of Test contains letter and score,
but they are not directly accessible from inside
the Test member functions. 6

Constructors and Destructors in
Base and Derived Classes

• Derived classes can have their own constructors and
destructors
• When an object of a derived class is created,

1. the base class’s (default) constructor is executed first,
2. followed by the derived class’s constructor

• When an object of a derived class is destroyed,
1. the derived class destructor is called first,
2. then the base class destructor

7

Constructors and Destructors:
example

class BaseClass {!
public:!
 BaseClass() // Constructor!
 { cout << "This is the BaseClass constructor.\n"; }!
!
 ~BaseClass() // Destructor!
 { cout << "This is the BaseClass destructor.\n"; }!
};!
!
class DerivedClass : public BaseClass {!
public:!
 DerivedClass() // Constructor!
 { cout << "This is the DerivedClass constructor.\n"; }!
!
 ~DerivedClass() // Destructor!
 { cout << "This is the DerivedClass destructor.\n"; }!
};

8

Constructors and Destructors:
example

int main() {!
 cout << "We will now define a DerivedClass object.\n";!
!
 DerivedClass object;!
 !
 cout << "The program is now going to end.\n";!
}

We will now define a DerivedClass object.!
This is the BaseClass constructor.!
This is the DerivedClass constructor.!
The program is now going to end.!
This is the DerivedClass destructor.!
This is the BaseClass destructor.

Output:

9

Passing Arguments to a non-default  
Base Class Constructor

• Allows programmer to choose which base class
constructor is called from the derived class constructor
• Specify arguments to base constructor in the derived

constructor function header:
!

!

!

• You must specify a call to a base class constructor if
base class has no default constructor

//assuming Square is derived from Rectangle: !
!
Square::Square(int side) : Rectangle(side, side) {!
 // code for Square constr goes here, if any!
}!

10

Redefining Base Class Functions
• Redefining function: a function in a derived class that

has the same name and parameter list as a function
in the base class
• Not the same as overloading – with overloading,

parameter lists must be different
• Objects of base class use base class version of

function; objects of derived class use derived class
version of function.
• To call the base class version from the derived class

version, you must prefix the name of the function with
the base class name and the scope resolution
operator: Rectangle::display()

11

Redefining Base Class Functions:
example

class Animal {!
 private:!
 string species;!
 public:!
 Animal() { species = "Animal";}!
 Animal(string spe) { species = spe ;}!
 void display()!
 {cout << "species " << species; }!
};

class Primate: public Animal {!
 private:!
 int heartCham;!
 public:!
 Primate() : Animal("Primate") { }!
 Primate(int in) : Animal ("Primate") { heartCham = in; }!
 void display()!
 { Animal::display(); //call to base class display()!
 cout << ", # of heart chambers " << heartCham; }!
}; 12

Redefining Base Class Functions:
example

species Animal!
species Primate, # of heart chambers 4

Output:

int main()!
{!
 Animal jasper; // Animal()!
 Primate fred(4); // Primate(int)!
 jasper.display(); cout << endl;!
 fred.display(); cout << endl;!
}

13

Include Guards

• These preprocessor directives prevent the header file
from accidentally being included more than once.
• If you have a base class with 2 derived classes, and

the derived classes are both included in a driver . . .

#ifndef RECTANGLE_H!
#define RECTANGLE_H!
class Rectangle!
{!
 private:!
 double width;!
 double length;!
 public:!
 void setWidth(double);!
 void setLength(double);!
 double getWidth() const;!
 double getLength() const;!
 double getArea() const;!
};!
#endif

Rectangle.h

14

Polymorphism
! The Greek word poly means many, and the

Greek word morphism means form.
! So, polymorphism means 'many forms'.
! In object-oriented programming (OOP),

polymorphism refers to
- identically named (and redefined) methods
- that have different behavior depending on the

(specific derived) type of object that they are called
on.

15

Example of polymorphism?
class Animal {!
 private:!
 ...!
 public:!
 void speak() { cout << “none ”; }!
};!
!
class Cat : public Animal {!
 private:!
 ...!
 public:!
 void speak() { cout << “meow “; }!
};!
class Dog : public Animal {!
 private:!
 ...!
 public:!
 void speak() { cout << “bark “; }!
};

cout << “Name” << name1 << endl;

16

Example of polymorphism?, part 2
void f (Animal a) {!
 a.speak();!
}!
!
int main() {!
 Cat c;!
 Dog d;!
 f(c);!
 f(d);!
}

cout << “Name” << name1 << endl;

! IF the output is “meow bark”, this (function f)
is an example of polymorphism.
- The behavior of a in f would depend on its

specific (derived type).
! IF the output is “none none”, it’s not

polymorphism.

17

Polymorphism in C++

! Polymorphism in C++ is supported through:
- virtual methods AND
- pointers to objects OR reference variables/

parameters.
! without these, C++ determines which method to

invoke at compile time (using the variable type).
! when virtual methods and pointer/references are

used together, C++ determines which method to
invoke at run time (using the specific type of the
instance currently referenced by the variable).

cout << “Name” << name1 << endl;

18

Virtual methods

! Virtual member function: function in a base class
that expects to be redefined in derived class

! Function defined with key word virtual:
!

!

! Supports dynamic binding: functions bound at
run time to function that they call

! Without virtual member functions, C++ uses
static (compile time) binding

cout << “Name” << name1 << endl;

virtual void Y() {...}

19

Example virtual methods

cout << “Name” << name1 << endl;

class Animal {!
 public:!
 virtual void speak();!
 int age();!
};!
class Cat : public Animal!
{!
 public:!
 virtual void speak(); //redefining a virtual!
 int age(); //redefining a normal function!
};!
int main()!
{!
 Cat morris;!
 Animal *pA = &morris; //using a pointer to get dynamic binding!
 pA -> age(); // Animal::age() is invoked (base) (not virtual)!
 pA -> speak(); // Cat::speak() is invoked (derived)!
...!
}

20

Virtual methods

! In compile-time binding, the data type of the
pointer resolves which method is invoked.

! In run-time binding, the type of the object
pointed to resolves which method is invoked.

cout << “Name” << name1 << endl;

void f (Animal &a) {!
 a.speak();!
}!
!
int main() {!
 Cat c;!
 Dog d;!
 f(c);!
 f(d);!
}

! Assuming speak is virtual,
since a is passed by
reference, the output is:

meow bark

21

Heterogeneous Array version 1:

cout << “Name” << name1 << endl;

class COne {!
 public:!
 void vWhoAmI() { cout << "I am One" << endl; }!
};!
class CTwo : public COne {!
 public:!
 void vWhoAmI() { cout << "I am Two" << endl; }!
};!
class CThree : public CTwo {!
 public:!
 void vWhoAmI() { cout << "I am Three" << endl; }!
};

int main() {!
{!
 COne *apCOne[3] = { new COne, new CTwo, new CThree };!
 for (int i = 0; i < 3; i++)!
 apCOne[i] -> vWhoAmI();!
}

I am One
I am One
I am One

Output:
22

Heterogeneous Array version 2:

cout << “Name” << name1 << endl;

class COne {!
 public:!
 virtual void vWhoAmI() { cout << "I am One" << endl; }!
};!
class CTwo : public COne {!
 public:!
 void vWhoAmI() { cout << "I am Two" << endl; }!
};!
class CThree : public CTwo {!
 public:!
 void vWhoAmI() { cout << "I am Three" << endl; }!
};

int main() {!
{!
 COne *apCOne[3] = { new COne, new CTwo, new CThree };!
 for (int i = 0; i < 3; i++)!
 apCOne[i] -> vWhoAmI();!
}

I am One
I am Two
I am Three

Output:

23

Abstract classes and
Pure virtual functions

• Pure virtual function: a virtual member function
that must be overridden in a derived class.
!

• The = 0 indicates a pure virtual function
• Must have no function definition in the base

class.

virtual void Y() = 0;

24

Abstract classes and
Pure virtual functions

• Abstract base class: a class that can have no
objects (instances).
• Serves as a basis for derived classes that will

have objects
• A class becomes an abstract base class when

one or more of its member functions is a pure
virtual function.

25

Example: Abstract Class
!

!

!

! An abstract class may not be used as an
argument type, as a function return type,or as
the type of an explicit conversion.

! Pointers and references to an abstract class
may be declared.

cout << “Name” << name1 << endl;

class CShape {!
 public:!
 CShape () { }!
 virtual void vDraw () const = 0; // pure virtual method!
};

CShape CShape1; // Error: object of abstract class!
CShape* pCShape; // Ok!
CShape CShapeFun(); // Error: return type!
void vg(CShape); // Error: argument type

26

Example: Abstract Class
! Pure virtual functions are inherited as pure

virtual functions.
!

!

!

!

! Or else:

cout << “Name” << name1 << endl;

class CAbstractCircle : public CShape {!
 private:!
 int m_iRadius;!
 public:!
 void vRotate (int) {} !
 // CAbstractCircle ::vDraw() is a pure virtual function!
};

class CCircle : public CShape {!
 private:!
 int m_iRadius;!
 public:!
 void vRotate (int) {} !
 void vDraw(); //define here or in impl file!
};

27

Heterogeneous collection:
abstract base class

cout << “Name” << name1 << endl;

class Animal {!
 private:!
 string name;!
 public:!
 Animal(string n) {name = n;}!
 virtual void speak() = 0;!
};!
class Cat : public Animal {!
 public:!
 Cat(string n) : Animal(n) { };!
 void speak() {cout << "meow "; }!
};!
class Dog : public Animal {!
 public:!
 Dog(string n) : Animal(n) { };!
 void speak() {cout << "bark "; }!
};!
class Pig : public Animal {!
 public:!
 Pig(string n) : Animal(n) { };!
 void speak() {cout << "oink "; }!
};

28

Heterogeneous collection:
abstract base class

! Driver:

cout << “Name” << name1 << endl;

int main()!
{!
 Animal* animals[] = {!
 new Cat("Charlie"),!
 new Cat("Scamp"),!
 new Dog("Penny"),!
 new Cat("Libby"),!
 new Cat("Patches"),!
 new Dog("Milo"),!
 new Pig("Wilbur") };!
 !
 for (int i=0; i< 7; i++) {!
 animals[i]->speak();!
 }!
}

meow meow bark meow meow bark oink

29

Multiple Inheritance

• A derived class can have more than one base
class
!

!

• Derived class inherits members from both base
classes
• Problems if base classes have members with

same names
• See book for solutions.

class cube : public square, !
! ! ! ! ! public rectSolid;

