
Programming Assignment #3 

Practice with pointers and dynamic memory allocation 

CS 2308.251 and 252, Spring 2015 
Instructor: Jill Seaman 

Due: before class Wednesday, 3/4/2014 (upload electronic copy by 9:30am) 

Problem: 

Write a C++ program that will implement and test the five functions described below 
that use pointers and dynamic memory allocation. 

The Functions: 

You will write the five functions described below.  Then you will call them from the main 
function, to demonstrate their correctness. 

1. maximum: takes an int array and the array's size as arguments.  It should 
return the maximum value of the array elements.  Do not use square brackets 
ANYWHERE in the function (use pointers instead).  Extra challenge: Do not use 
the loop variable in the body of the loop.   

2. oddSwap: The following function uses reference parameters.  Rewrite the 
function so it uses pointers instead of reference variables.  When you test this 
function from the main program, demonstrate that it changes the values of the 
variables passed into it. 

 
int oddSwap (int &x, int &y) {
   int temp = x;
   x = y * 5;
   y = temp * 5;
   return x + y;
}

3. resize: takes an int array and the array's size as arguments. It should create a 
new array that is twice the size of the argument array.  The function should copy 
the contents of the argument array to the new array, and initialize the unused 
elements of the new array with -1.  The function should return a pointer to the 
new array. 
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4. concatenate: takes two int arrays and the arrays' sizes as arguments (that's 4 
arguments).  It should create a new array big enough to store both arrays.  Then 
it should copy the contents of the first array to the new array, and then copy the 
contents of the second array to the new array in the remaining elements, and 
return a pointer to the new array. 

5. subArray: takes an int array, a start index and a length as arguments.  It 
creates a new array that is a copy of the elements from the original array 
starting at the start index, and has length equal to the length argument.  For 
example, subArray(aa,5,4) would return a new array containing only the 
elements aa[5], aa[6], aa[7], and aa[8].  
 
You must define subArray as follows: 
 
Add the code for the duplicateArray function from the lecture slides for chapter 9 
(slide 24) to your program.  Add the code for the subArray function given below 
to your program.  Fill in the blanks with expressions so that the function 
subArray behaves as described above. 

int *subArray (int *array, int start, int length) { 
    int *result = duplicateArray(__________, ___________); 
    return result; 
}  
 
DO NOT alter duplicateArray, DO NOT alter subArray as defined above. 

Output:   

Test these five functions using the main function as a driver.  The driver should pass 
(constant) test data as arguments to the functions.  Select appropriate test data for 
each function and then call that function using the test data.  For each function, you 
should output four lines: a label indicating which function is being tested, the test data, 
the expected results, and the actual results.  For the test data and Expected result, you 
should hard code the output values (use string literals containing the numeric values), 
for the Actual results, use the actual values returned/altered by the function.  

testing maximum:
test data: 1 2 3 4 5 6 7 -8 9 0 
Expected maximum: 9
Actual maximum:   9

testing oddSwap
test data: a:3 b:5
Expected result: 40  a: 25  b: 15
Actual results : 40  a: 25  b: 15
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testing resize:
test data: 1 2 3 4 5 6 7 8 9 0 
Expected result: 1 2 3 4 5 6 7 8 9 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
Actual result:   1 2 3 4 5 6 7 8 9 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

testing concat:
test data: 1 2 3 4 5 6 7 8 9 0  and  11 22 33 44 55 
Expected result: 1 2 3 4 5 6 7 8 9 0 11 22 33 44 55 
Actual result:   1 2 3 4 5 6 7 8 9 0 11 22 33 44 55 

testing subArray:
test data: 1 2 3 4 5 6 7 8 9 0 
start: 5 length: 4
Expected result: 6 7 8 9
Actual result:   6 7 8 9 

RULES:  

• DO NOT change the names of the functions! 
• DO NOT do any output from the functions (only from main)! 
• DO NOT do any input at all! 

NOTES:  

• This program should be developed using a Linux or Unix environment.    

• It is your responsibility to fully test your functions.  They must work for ANY valid 
input.  The main function you submit must have at least one test case for each 
function.   

• For oddswap, compute the value of the call to oddswap BEFORE you output it: 

• You do not need to use named constants for your test data (or array sizes) in 
this assignment, but you DO need to follow the rest of the style guidelines 
including function definition comments. 

• Your program should release any dynamically allocated memory when it is 
finished using it.  

• I recommend using a function that displays the values of an int array on one line, 
separated by spaces, for displaying test arrays and results. 

• Do not use any features of C++ that we have not yet covered in class (use 
features from Chapters 1-9 only.
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int z = oddswap(.......);
cout << z << .....;



Logistics: 

Name your file assign3_xxxxx.cpp where xxxxx is your TX State NetID (your 
txstate.edu email id).  The file name should look something like this: assign3_js236.cpp   

There are two steps to the turn-in process: 

1. Submit an electronic copy using the Assignments tool on the TRACS website for 
this class. 

2. Submit a printout of the source file at the beginning of class, the day the 
assignment is due.  Please print your name on the front page, staple if there is 
more than one page.   
 
If you are unable to turn a printout in during class, you have until 5pm on the 
day the assignment is due to turn it in to the computer science department office 
(Comal 211).  They will stamp it and put it in my mailbox.  DO NOT slide it under 
my office door. 
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