
1

Ch. 17: Linked Lists

CS 2308
Spring 2015

Jill Seaman

2

17.1 Introduction to Linked Lists
! A data structure representing a list
! A series of nodes chained together in sequence

- Each node points to one other node.
! A separate pointer (the head) points to the first

item in the list.
! The last element points to nothing (NULL)

NULL

list
head

3

Introduction to Linked Lists
! The nodes are dynamically allocated

- The list grows and shrinks as nodes are added/
removed.

• Linked lists can easily insert a node between
other nodes
• Linked lists can easily delete a node from

between other nodes
NULL

list
head

4

Node Organization
! The node is usually implemented as a struct
! Each node contains:
- a data field – may be organized as a structure, an

object, etc.
- a pointer – that can point to another node

data

pointer

5

Empty List
! An empty list contains 0 nodes.
! The list head points to NULL (address 0)
! (There are no nodes, it’s empty)

NULL

list
head

6

Declaring the Linked List data type

! We will be defining a class to represent a linked
list data type that can store values of type
double.

! This data type will describe the values (the lists)
and operations over those values.

! In order to define the values we must:
- define a (nested) data type for the nodes
- define a pointer variable (head) that points to the

first node in the list.

7

Declaring the Node data type

! Use a struct for the node type

! (this is just a data type, no variables declared)
! next can hold the address of a ListNode.

- it can also be NULL
- “self-referential data structure”

struct ListNode {
 double value;
 ListNode *next;
};

8

Defining the Linked List
member variable

! Define a pointer for the head of the list:

! It must be initialized to NULL to signify the end
of the list.

! Now we have an empty linked list:

ListNode *head;

NULL

head

9

Using NULL

! Equivalent to address 0
! Used to specify end of the list
! In C++11, you can use nullptr instead of NULL
! NULL is defined in the cstddef header: 

! to test a pointer for NULL (these are equivalent):
#include <cstddef>

while (p) ... <==> while (p != NULL) ...

if (!p) ... <==> if (p == NULL) ...
10

17.2 Linked List operations

! Basic operations:
- create a new, empty list
- append a node to the end of the list
- insert a node within the list
- delete a node
- display the linked list
- delete/destroy the list

11

Linked List class declaration

!

#include <cstddef> // for NULL
using namespace std;

class NumberList
{
 private:
 struct ListNode // the node data type
 {
 double value; // data
 ListNode *next; // ptr to next node
 };
 ListNode *head; // the list head

 public:
 NumberList(); // creates an empty list
 ~NumberList();

 void appendNode(double);
 void insertNode(double);
 void deleteNode(double);
 void displayList();
};

NumberList.h

12

Operation:
Create the empty list

! Constructor: sets up empty list

#include "NumberList.h"

NumberList::NumberList()
{
 head = NULL;
}

NumberList.cpp

13

Operation:
append node to end of list

! appendNode: adds new node to end of list
! Algorithm: 
 

Create a new node and store the data in it
If the list has no nodes (it’s empty)
 Make head point to the new node.
Else
 Find the last node in the list
 Make the last node point to the new node

14

appendNode: find last elem

! How to find the last node in the list?
! Algorithm:

! In C++: 
 

Make a pointer p point to the first element
while (the node p points to) is not pointing to NULL
 make p point to (the node p points to) is pointing to

ListNode *p = head;
while ((*p).next != NULL)
 p = (*p).next;

ListNode *p = head;
while (p->next)
 p = p->next;

<==>

p=p->next is like i++

15

void NumberList::appendNode(double num) {

 ListNode *newNode; // To point to the new node

 // Create a new node and store the data in it
 newNode = new ListNode;
 newNode->value = num;
 newNode->next = NULL;

 // If empty, make head point to new node
 if (head==NULL)
 head = newNode;

 else {
 ListNode *p; // To move through the list
 p = head; // initialize to start of list

 // traverse list to find last node
 while (p->next) //it’s not last
 p = p->next; //make it pt to next

 // now p pts to last node
 // make last node point to newNode
 p->next = newNode;
 }
}

in NumberList.cpp

16

Driver to demo NumberList

! ListDriver.cpp version 1 (no output)

#include "NumberList.h"

int main() {

 // Define the list
 NumberList list;

 // Append some values to the list
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);

}

ListDriver.cpp

17

Traversing a Linked List

! Visit each node in a linked list, to
- display contents, sum data, test data, etc.

! Basic process:

set a pointer to point to what head points to
while pointer is not NULL
 process data of current node
 go to the next node by setting the pointer to
 the pointer field of the current node
end while

18

Operation: display the list

void NumberList::displayList() {

 ListNode *p; //ptr to traverse the list

 // start p at the head of the list
 p = head;

 // while p pts to something (not NULL), continue
 while (p)
 {
 //Display the value in the current node
 cout << p->value << “ “;

 //Move to the next node
 p = p->next;
 }
 cout << endl;
}

in NumberList.cpp

19

Driver to demo NumberList

! ListDriver.cpp version 2

#include "NumberList.h"

int main() {

 // Define the list
 NumberList list;

 // Append some values to the list
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);

 // Display the values in the list.
 list.displayList();
}

Output:
2.5 7.9 12.6

ListDriver.cpp

20

Operation: destroy a List
! The destructor must “delete” (deallocate) all

nodes used in the list
! To do this, use list traversal to visit each node
! ~NumberList: what’s wrong with this definition?

NumberList::~NumberList() {

 ListNode *p; // traversal ptr
 p = head; //start at head of list

 while (p) {

 delete p; // delete current
 p = p->next; // advance ptr
 }
}

21

destructor

! You need to save p->next before deleting p:

NumberList::~NumberList() {

 ListNode *p; // traversal ptr
 ListNode *n; // saves the next node

 p = head; //start at head of list

 while (p) {

 n = p->next; // save the next
 delete p; // delete current
 p = n; // advance ptr
 }
}

in NumberList.cpp

22

Operation:
delete a node from the list

! deleteNode: removes node from list, and deletes
(deallocates) the removed node.

! Requires two extra pointers:
- one to point to the node before the node to be

deleted. (n) [why?]
- one to point to the node to be deleted (p) [why?] 
 

NULL

head

5 13 19

pn

Deleting 13 from the list

23

Deleting a node
! Change the pointer of the previous node to point

to the node after the one to be deleted.

! Now just “delete” the p node

NULL

head

5 13 19

pn

n->next = p->next;

24

Deleting a node
! After the node is deleted:

NULL

head

5 19

pn

delete p;

25

deleteNode code

void NumberList::deleteNode(double num) {

 ListNode *p = head; // to traverse the list
 ListNode *n; // trailing node pointer

 // skip nodes not equal to num, stop at last
 while (p && p->value!=num) {
 n = p; // save it!
 p = p->next; // advance it
 }

 // p not null: num was found, set links + delete
 if (p) {
 if (p==head) { // p points to the first elem.
 head = p->next;
 delete p;
 } else { // n points to the predecessor
 n->next = p->next;
 delete p;
 }
 }

in NumberList.cpp

26

Driver to demo NumberList

// set up the list
NumberList list;
list.appendNode(2.5);
list.appendNode(7.9);
list.appendNode(12.6);
list.displayList();

cout << endl << "remove 7.9:" << endl;
list.deleteNode(7.9);
list.displayList();

cout << endl << "remove 8.9: " << endl;
list.deleteNode(8.9);
list.displayList();

cout << endl << "remove 2.5: " << endl;
list.deleteNode(2.5);
list.displayList();

Output:
2.5 7.9 12.6

remove 7.9:
2.5 12.6

remove 8.9:
2.5 12.6

remove 2.5:
12.6

in ListDriver.cpp

27

Operation:
insert a node into a linked list

! Inserts a new node into the middle of a list.
! Uses two extra pointers:
- one to point to node before the insertion point [why?]
- one to point to the node after the insertion point

[why?] [this one is optional]

NULL

head

5 13 19

newNode

17 NULL

pn

28

Inserting a Node into a Linked List
! Insertion completed:

NULL

head

5 13 19

newNode

17

pnn->next = newNode;
newNode->next = p;

29

Insert Node Algorithm
How do you determine the insertion point?
! Maintain sorted list: the insertion point is

immediately before the first node in the list that
has a value greater than the value being inserted.
We do this.

! Insert by position: InsertNode takes a second
argument that is the index of a node. Insert new
value before (or after) that node.

! Use a cursor: The list class has a member
variable that is a pointer to a “current node”, insert
new value before (or after) the current node. 30

insertNode code
void NumberList::insertNode(double num) {
 ListNode *newNode; // ptr to new node
 ListNode *p; // ptr to traverse list
 ListNode *n; // node previous to p

 //allocate new node
 newNode = new ListNode;
 newNode->value = num;

 // skip all nodes less than num
 p = head;
 while (p && p->value < num) {
 n = p; // save
 p = p->next; // advance
 }

 if (p == head) { //insert before first
 head = newNode;
 newNode->next = p;
 }
 else { //insert after n
 n->next = newNode;
 newNode->next = p;
 }
}

in NumberList.cpp

31

Driver to demo NumberList

int main() {

 // set up the list
 NumberList list;
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);
 list.displayList();

 list.insertNode (8.5);
 list.displayList();

 list.insertNode (1.5);
 list.displayList();

 list.insertNode (21.5);
 list.displayList();

}

Output:
2.5 7.9 12.6
2.5 7.9 8.5 12.6
1.5 2.5 7.9 8.5 12.6
1.5 2.5 7.9 8.5 12.6 21.5

in ListDriver.cpp

32

Advantages of linked lists over
arrays

! A linked list can easily grow or shrink in size.
- Nodes are created in memory as they are needed.
- The programmer doesn’t need to predict how many

elements will be in the list.
! The amount of memory used to store the list is

always proportional to the number of elements in
the list.
- For arrays, the amount of memory used is often much

more than is required by the actual elements in the list.
! When a node is inserted into or deleted from a

linked list, none of the other nodes have to be
moved.

33

Advantages of arrays over linked
lists

! Arrays allow random access to elements: array[i]
- linked lists allow only sequential access to elements

(must traverse list to get to i’th element).

! Arrays do not require extra storage for “links”
- linked lists are impractical for lists of characters or

booleans (pointer value is bigger than data value). 

34

Exercise: find four errors

!

int main() {
 struct node {
 int data;
 node * next;
 }

 // create empty list
 node * list;

 // insert six nodes at front of list
 node *n;
 for (int i=0;i<=5;i++) {
 n = new node;
 n->data = i;
 n->next = list;
 }

 // print list
 n = list;
 while (!n) {
 cout << n->data << " ";
 n = n->next;
 }
 cout << endl;
}

