—_— —

Exam | Review

CS 3358
Spring 2015

Jill Seaman

Exam |

* Monday, March 2

* In class, closed book, closed notes, clean desk
* 20% of your final grade

* 80 minutes

* | recommend using a pencil (and eraser)

« All writing will be done on the test paper | will
hand out.

* No calculators or cell phones or head phones.

2

Exam Format

* 100 points total

- Writing programs/functions/code (about 50%)
- Multiple choice
- Fill-in-the-blank/short answer

- Tracing code
+ what is the output OR
+ show the diagram of a linked list

- Finding errors in code (maybe)

Arrays, pointers, structs

 Data types, scalar, composite (arrays)

* First-class vs second-class objects

* Pointers: declare, assign, use (dereference)

* Dynamic memory allocation (and deallocation)
« Structures, pointers to structures, objects (->)

* Shallow copy vs. deep copy




(— (— Linked Lists

Objects and classes

i . L H t d f link d list Read chapter 17 in Gaddis,
Encapsulation, Information hiding, Interface OW 10 define a linkea 1S NOT in Weiss book.
Class declaration Node definition (next, previous)

data members, member functions, public and private head (tail, ...)
e ege g . Using null pointers Demo code is on
Default parameters, initializer list, const member the class website.

function Basic operations: be able to implement for single
or doubly linked list. (NumberList demo)

constructor, append, insert, remove, destroy
display the list, copy constructor
Know how to draw the lists from code

The big three (defaults, when to override)
destructor, copy constructor, operator=

Operator overloading

How to separate source code into multiple files

! . L N .
Know how to implement Card/Deck/Player Arrays vs. linked lists: pros+cons
N — < -
Introduction to ADTs Introduction to C++ STL
Data structure vs abstract data type (definitions) containers vs iterators
Commonly used ADTs (list, set, bag, map) Know how to use vectors:
understand the operations, be able to implement operations described in the slides only:
Implementation vs. interface of an ADT W1 Arrays, Pointers, Structs, slides 9 and 10
abstract and concrete parts of the implementation W5 ADT Intro, slides 27, 28, 29
bag implementations: Be able to read code that uses an iterator

version 1: fixed length array

version 2: dynamically allocated array
how to resize a dynamic array

List_3358 demo and PA2 (arrays and linked lists)




Analysis of algorithms

Understand the concept:

approximating the amount of time it takes to
execute an algorithm by counting statements, in
terms of data size (N).

Know the growth rate functions

Which ones are faster growing than others

For a given algorithm/code sample, be able to
determine the Big O function (to say it is O(E(N)))

Given two implementations, be able to say which
is more efficient (faster) than the other, based on
their Big O functions. 9

Example Tracing Problem

Draw a picture to depict the nodes in memory after the following code
is executed.

struct Node {
int data;
Node *next;
Node *other;

}i

Node *ptr;

Node *temp = new Node;
temp->data = 42;

temp->other = temp;
temp->next = NULL;
ptr = temp;

temp = new Node;
temp->data = 13;
temp->next = ptr; 11

Example Programming Problem

Given the class declaration (provided in the test) for a
bag implemented as a singly-linked list, write C++ code
to implement member functions that will

a) add an item to the bag.

b) return the number of occurrences of a given element
in the bag.

You should be prepared to implement the ADTs whose operations were
described in the ADT Intro lecture, using array, dynamic arrays, or linked lists.

Example Short Answer

What is the Big O function for the insert operation in a doubly linked
list when inserting before the cursor?

I will provide the code for the operation this time
Answer would be something like: O(n) or O(1) or O(n?) ...

Practice: figure out the Big O functions for all
of the operations in the ADT implementations in
the slides and demos and programming assignments.




— |

How to Study

* Review the slides
- understand all the concepts, quiz yourself!
* Use the book(s) to help understand the slides

- there will be no questions over material (or code)
that is in the book but not on the slides

» Understand the code in the demo(s)!
* Understand the programming assignments

- rewrite yours so they work correctly!
* Practice, practice, practice

» Get some sleep

|




