
1

Sorting Algorithms
Chapter 9

CS 3358
Spring 2015

Jill Seaman

Sections 9.1, 9.2, 9.3, 9.5, 9.6
2

What is sorting?

! Sort: rearrange the items in a list
into ascending or descending order
- numerical order
- alphabetical order
- etc.

55 112 78 14 20 179 42 67 190 7 101 1 122 170 8

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

3

Why is sorting important?
! Searching in a sorted list is much easier than

searching in an unsorted list.
! Especially for people:
- dictionary entries (in a dictionary book)
- phone book (remember these?)
- card catalog in library (it used to be drawers of index

cards)
- bank statement: transactions in date order

! Most of the data displayed by computers is
sorted. 4

Sorting

! Sorting is one of the most intensively studied
operations in computer science

! There are many different sorting algorithms

! The run-time analyses of each algorithm are
well-known.

5

Sorting algorithms
covered in this class

! Selection sort
! Insertion sort
! Bubble sort

! Merge sort
! Quicksort

! Heap sort (later, when we talk about heaps)
6

Selection sort

! There is a pass for each position (0..size-1)
! On each pass, the smallest (minimum) element

in the rest of the list is exchanged (swapped)
with element at the current position.

! The first part of the list (already processed) is
always sorted

! Each pass increases the size of the sorted
portion.

5

Selection Sort: Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

36

24

10

 6

12

U
N
S
O
R
T
E
D

6

Selection Sort: End Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

 6

24

10

 36

12

U
N
S
O
R
T
E
D

SORTED

7

SORTED

Selection Sort: Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

 6

24

10

 36

12

U
N
S
O
R
T
E
D

8

Selection Sort: End Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

U
N
S
O
R
T
E
D

SORTED

9

Selection Sort: Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

U
N
S
O
R
T
E
D

SORTED

10

Selection Sort: End Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

36

24

S
O
R
T
E
D

UNSORTED

11

Selection Sort: Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

36

24

S
O
R
T
E
D

UNSORTED

12

Selection Sort: End Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

24

36

S
O
R
T
E
D

15

Selection sort: code
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
 int minIndex = start;
 for (int i = start+1; i < size; i++)
 if (values[i] < values[minIndex])
 minIndex = i;
 return minIndex;
}

template<class ItemType>
void selectionSort (ItemType values[], int size) {
 int min;
 for (int index = 0; index < (size -1); index++) {
 min = minIndex(values, SIZE, index);
 swap(values[min],values[index]);
 }
}

template <class T> void swap (T& a, T& b); is in the <algorithm> library 16

Efficiency of Selection Sort

! N is the number of elements in the list
! Outer loop (in selectionSort) executes N-1 times
! Inner loop (in minIndex) executes N-1, then N-2,

then N-3, ... then once.
! Total number of comparisons (in inner loop):

 (N-1) + (N-2) + . . . + 2 + 1 = (N-1)(N-1+1)/2
 = (N-1)N/2
 = (N2-N)/2
 = N2/2 - N/2 O(N2)

(N-1) + (N-2) + . . . + 2 + 1 = the sum of 1 to N-1

From math class:

17

Insertion sort

! There is a pass for each position (0..size-1)
! The front of the list remains sorted.
! On each pass, the next element is placed in its

proper place among the already sorted
elements.

! Like playing a card game, if you keep your hand
sorted, when you draw a new card, you put it in
the proper place in your hand.

! Each pass increases the size of the sorted
portion.

22

Insertion Sort: Pass One

values [0]

 [1]

 [2]

 [3]

 [4]

36

24

10

 6

12

SORTED

U
N
S
O
R
T
E
D

23

Insertion Sort: Pass Two

values [0]

 [1]

 [2]

 [3]

 [4]

24

36

10

 6

12

U
N
S
O
R
T
E
D

SORTED

24

Insertion Sort: Pass Three

values [0]

 [1]

 [2]

 [3]

 [4]

10

24

36

 6

12 UNSORTED

S
O
R
T
E
D

25

Insertion Sort: Pass Four

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

24

36

12

S
O
R
T
E
D

UNSORTED

26

Insertion Sort: Pass Five

values [0]

 [1]

 [2]

 [3]

 [4]

 6

10

12

24

36

S
O
R
T
E
D

23

Insertion sort: code

template<class ItemType>
void insertionSort (ItemType a[], int size) {

 for (int index = 1; index < size; index++) {
 ItemType tmp = a[index]; // next element

 int j = index; // start from the end of sorted part

 // find tmp's place, AND shift bigger elements up
 while (j > 0 && tmp < a[j-1]) {
 a[j] = a[j-1]; // shift bigger element up
 j--;
 }
 a[j] = tmp; // put tmp in its place
 }
}

24

Insertion sort: runtime analysis

! Very similar to Selection sort
! Total number of comparisons (in inner loop):
- At most 1, then 2, then 3 ... up to N-1 for the last

element.
! So it’s 

O(N2)

(N-1) + (N-2) + . . . + 2 + 1 == N2/2 - N/2

25

Bubble sort

! On each pass:
- Compare first two elements. If the first is bigger, they

exchange places (swap).
- Compare second and third elements. If second is

bigger, exchange them.
- Repeat until last two elements of the list are

compared.
! Repeat this process until a pass completes with

no exchanges

26

Bubble sort
Example: first pass

! 7 2 3 8 9 1 7 > 2, swap
! 2 7 3 8 9 1 7 > 3, swap
! 2 3 7 8 9 1 !(7 > 8), no swap
! 2 3 7 8 9 1 !(8 > 9), no swap
! 2 3 7 8 9 1 9 > 1, swap
! 2 3 7 8 1 9 finished pass 1, did 3 swaps

Note: largest element is in last position

27

Bubble sort
Example: second and third pass

! 2 3 7 8 1 9 2<3<7<8, no swap, !(8<1), swap
! 2 3 7 1 8 9 (8<9) no swap
! finished pass 2, did one swap 

! 2 3 7 1 8 9 2<3<7, no swap, !(7<1), swap
! 2 3 1 7 8 9 7<8<9, no swap
! finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions

28

Bubble sort
Example: passes 4, 5, and 6

! 2 3 1 7 8 9 2<3, !(3<1) swap, 3<7<8<9
! 2 1 3 7 8 9
! finished pass 4, did one swap
! 2 1 3 7 8 9 !(2<1) swap, 2<3<7<8<9
! 1 2 3 7 8 9
! finished pass 5, did one swap
! 1 2 3 7 8 9 1<2<3<7<8<9, no swaps
! finished pass 6, no swaps, list is sorted!

29

Bubble sort
how does it work?

! At the end of the first pass, the largest element is
moved to the end (it’s bigger than all its
neighbors)

! At the end of the second pass, the second largest
element is moved to just before the last element.

! The back end (tail) of the list remains sorted.
! Each pass increases the size of the sorted

portion.
! No exchanges implies each element is smaller

than its next neighbor (so the list is sorted).
30

Bubble sort: code

template<class ItemType>
void bubbleSort (ItemType a[], int size) {

 bool swapped;
 do {
 swapped = false;
 for (int i = 0; i < (size-1); i++) {
 if (a[i] > a[i+1]) {
 swap(a[i],a[i+1]);
 swapped = true;
 }
 }
 } while (swapped);
}

31

Bubble sort: runtime analysis
! Each pass makes N-1 comparisons
! There will be at most N passes
- one to move the right element into each position

! So worst case it’s:
! If you change the algorithm to look at only the

unsorted part of the array in each pass, it’s
exactly like the selection sort:

! What is the best case for Bubble sort?
! Are there any sorting algorithms better than O(N2)?

O(N2) (N-1)*N

(N-1) + (N-2) + . . . + 2 + 1 = N2/2 - N/2 still O(N2)

32

Merge sort
! Divide and conquer!
! 2 half-sized lists sorted recursively
! the algorithm:
- if list size is 0 or 1, return (base case) otherwise:
- recursively sort first half and then second half of list.
- merge the two sorted halves into one sorted list.

✦ choose the smaller of the two first elements, move it to the
end of the new sorted list.

✦ repeat until one list is empty.
✦ move the remaining list’s elements to the end of the new

sorted list.

33

Merge sort
Example

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

! Recursively divide list in half:
- call mergeSort recursively on each one.

Each of these are sorted (base case length = 1)
34

Merge sort
Example

! Calls to merge, starting from the bottom:

35

Merge sort
Merging

! How to merge 2 (adjacent) lists:

1 13 24 26 2 15 27 38
first middle last k

tempvalues

1 13 24 26 2 15 27 38
i j k

1 13 24 26 2 15 27 38
i j

1
k

1 13 24 26 2 15 27 38
i j

1 2
k

1 13 24 26 2 15 27 38
i j

1 2 13
k

compare values[i] to values[j], copy smaller to temp[k]

Merge sort
Merging

! Continued:

1 13 24 26 2 15 27 38 1 2 13 15
k

tempvalues

1 13 24 26 2 15 27 38
i j

1 2 13 15 24
k

1 13 24 26 2 15 27 38
i j

1 2 13 15 24 26
k

1 13 24 26 2 15 27 38
i j

1 2 13 15 24 26 27
k

1 13 24 26 2 15 27 38
i j

1 2 13 15 24 26 27 38
k

Now i==middle+1

i j

Now j==last+1 copy temp to values

37

Merge sort: code

template<class ItemType>
void mergeSortRec (ItemType values[], int first, int last) {
 if (first < last) {
 int middle = (first + last) / 2;

 mergeSortRec(values, first, middle);
 mergeSortRec(values, middle+1, last);

 merge(values, first, middle, last);
 }
}

template<class ItemType>
void mergeSort (ItemType values[], int size) {
 mergeSortRec(values, 0, size-1);
}

38

Merge sort: code: merge
template<class ItemType>
void merge(ItemType values[], int first, int middle, int last) {

 ItemType tmp[last-first+1]; //temporary array, could use dynamic alloc.
 int i=first; //index for left
 int j=middle+1; //index for right
 int k=0; //index for tmp

 while (i<=middle && j<=last) //merge, compare next elem from each array
 if (values[i] < values[j])
 tmp[k++] = values[i++];
 else
 tmp[k++] = values[j++];

 while (i<=middle) //merge remaining elements from left, if any
 tmp[k++] = values[i++];

 while (j<=last) //merge remaining elements from right, if any
 tmp[k++] = values[j++];

 for (int i = first; i <=last; i++) //copy from tmp array back to values
 values[i] = tmp[i-first];
}

39

Merge sort: runtime analysis

! Let’s start with a run-time analysis of merge  
(of 2 sorted sublists into one sorted list)

! Let’s use M as the size of the final list
- The merging requires M (or fewer) comparisons

+copies
- Copying from the temp array is M copies
- So merge is O(M), worst case

40

Merge sort: runtime analysis

! At each level in the graph (except the top)
- merge is called on each sub-list
- The total size of each sub-list (M) added up is N
- the total execution time is O(N) for the level.

! There are log2 N levels in the graph (== how
many times can I divide N by 2 (until it’s <=1))?

! So log2 N levels times O(N) at each level:

O(N Log N)

41

Merge sort
Runtime analysis

! O(N) work done between each level (for merging):

N

N

N

O(2) O(2) O(2) O(2)

O(4)O(4)

O(8)

42

Merge sort: runtime analysis

! mergeSort has 2 recursive calls to itself.
! Why does it not have the exponential cost that

the Fibonacci algorithm had?

43

Quicksort

! Another divide and conquer!
! 2 (hopefully) half-sized lists sorted recursively
! the algorithm:
- If list size is 0 or 1, return. otherwise:
- partition into two lists:

❖ pick one element as the “pivot” element
❖ put all elements less than pivot in first half
❖ put all elements greater than pivot in second half

- recursively sort first half and then second half of list.
44

Quicksort
Example

45

Quicksort
Example cont.

46

Quicksort: partitioning
! Goal: partition a sub-array A [start ... last]  

by rearranging the elements and returning the
index of the pivot point p so that:
- A[x]<=A[p] for x<p and A[x]>=A[p] for x>p

! the algorithm:
- pick a pivot elem and swap with last elem
- let i = first and j = last -1

i j

5 6 4 6 3 12 19 5 6 4 63 1219

swap

pivot

47

Quicksort: partitioning

! the algorithm (continued):
- increment i while A[i] < A[last] (the pivot)
- decrement j while A[j] > A[last] (the pivot)

i j

5 6 4 63 1219

i j

5 6 4 63 1219

48

Quicksort: partitioning

! the algorithm (continued):
- When i and j have stopped,
- if i < j: swap A[i] and A[j]; i++; j--;
- maintains: A[x] <= pivot for x<=i and A[x] >= pivot for x >= j

swap

i j

5 6 4 63 1219

i j

5 3 4 66 1219

49

Quicksort: partitioning
! the algorithm (continued):
- repeat until i and j have met (i==j)* 

or crossed (i > j):
- swap A[i] and pivot (A[last])
- A[i] >= pivot (i stopped there, 

so A[i] >= pivot)
- puts pivot back in place

- return i (the pivot index) 

i j

5 3 4 66 1219

ij

5 3 4 66 1219

ij

5 3 4 6 6 12 19

*Note: if i==j, A[j] must be the pivot value, otherwise
either A[i]<pivot so i would not have stopped,
or A[j]>pivot, so j would not have stopped. 50

Quicksort: code
version 1

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {

 if (first < last) { //at least two elems
 int pivotPoint;

 // partition and get the pivot point (the index)
 pivotPoint = partition(values, first, last);

 quickSort(values, first, pivotPoint - 1);
 quickSort(values, pivotPoint + 1, last);
 }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
 quickSort(values, 0, size-1);
}

51

Quicksort: code
version 1

template<class ItemType>
int partition(ItemType values[], int first, int last) {

 int mid = (first + last) / 2; //use middle value as pivot

 ItemType pivotValue = values[mid];
 swap(values[last], values[mid]); //move pivot to end

 int i=first,j=last-1;
 while (i<j) {
 while (values[i] < pivotValue) {i++;}
 while (values[j] > pivotValue) {j--;}
 if (i < j) {
 swap(values[i++], values[j--]);
 }
 }
 swap(values[i], values[last]); //replace pivot
 return i;
}

52

Quicksort: runtime analysis
! Choice of pivot point dramatically affects running

time.
! Best Case
- Pivot partitions the set into 2 equally sized subsets at

each stage of recursion: O(log N) levels  
(== how many times can I divide N by 2 (until it’s <=1))
- Partitioning at each level is O(N)

❖ each element is compared to the pivot and maybe moved one
time

- O(N log N)

53

Quicksort: runtime analysis

! Worst Case
- Pivot is always the smallest element, partitioning the

set into one empty subset, and one of size N-1.
- Partitioning at each level is N

❖ T(N) = T(N-1) + N (time to sort N-1 plus N for partitioning)
❖ T(N) = N + N-1 + . . . + 2 + 1 (from unwinding the above)
❖ T(N) = N(N+1)/2  

- O(N2)

Moral of the story: it pays to pick a good pivot point
54

Quicksort: runtime analysis

! Average Case
- Assume left side is equally likely to have a size of 0

or 1 or 2 or ... or N elements (a random distribution)
- O(N log N)

❖ Not a trivial proof . . . most of it is in the Weiss book.

55

Quicksort: Picking the pivot
! Goal: ensure the worst case doesn’t happen.
! Picking a pivot randomly is safe
- but random number generation can be expensive

! Using the first element:
- if the input is randomly ordered, this is ok.
- if the input is sorted, all elements are in right half,

this is the worst case = O(N2)
! Use the median value (the middle value in order):
- perfectly divides into two even sides
- but you have to sort the list to find the median. 56

Quicksort: Picking the pivot
Median of Three method

! For the pivot value:
- Take the three values at the first, last, and middle

positions in the list.
- Throw out the max and min values.
- Use the remaining value as the pivot value.

! This is an “estimate” of the real median
- taking median of more than 3 is not worth the time

57

Quicksort: Picking the pivot
Median of Three method

! Median-of-Three partitioning:
- arrange the values (by swapping) at the first, last

and middle positions so that: 

- (this puts the median of the 3 in the middle).
- swap pivot (A[middle]) with A[last-1].
- start with i = first+1 and j=last-2 

(A[first] and A[last] are already in place).
- use same algorithm as original partitioning.

A[first] <= A[middle] <= A[last]

58

Quicksort: Picking the pivot
Median of Three method

pivot

5 6 4

6

3 12 192 13 6

5 6 4 3 12 192 6 13

A[left] = 2, A[center] = 13, A[right] = 6

Swap A[center] and A[right], so
the three values are in order

5 6 4 3 12 192 13

pivot

65 6 4 3 12192 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

Now we only need to partition A[left + 1, …, right – 2].

59

Quicksort: Small Arrays
! For very small arrays, quicksort does not

perform as well as insertion sort
➡ how small depends on many factors, such as the

time spent making a recursive call, the compiler, etc 

! Do not use quicksort recursively for small arrays
➡ Instead, use a sorting algorithm that is efficient for

small arrays, such as insertion sort
➡ a cutoff between 5 and 20 is good.
➡ Note: median of three partitioning requires at least 3

elements anyway 60

Quicksort: code
version 2

const in CUTOFF = 10;

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
 int pivotPoint;
 if (first + CUTOFF <= last) { // more than CUTOFF elems
 pivotPoint = partition(values, first, last);
 quickSort(values, first, pivotPoint - 1);
 quickSort(values, pivotPoint + 1, last);
 } else {
 insertionSort(values, first,last); //base case
 }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
 quickSort(values, 0, size-1);
}

Note: rewrite insertion sort for this signature:
insertionSort(ItemType values[],
 int first, int last);

61

Quicksort: code
version 2

template<class ItemType>
int partition(ItemType values[], int first, int last) {
 //sort first, mid, last
 int mid = (first + last) / 2;
 if (values[mid] < values[first]) swap(values[mid], values[first]);
 if (values[last] < values[first]) swap(values[last], values[first]);
 if (values[last] < values[mid]) swap(values[last], values[mid]);

 ItemType pivotValue = values[mid]; // move pivot to last-1
 swap(values[last-1], values[mid]);

 int i=first+1,j=last-2; // do the partitioning
 while (i<j) {
 while (values[i] < pivotValue) {i++;}
 while (pivotValue < values[j]) {j--;}
 if (i < j)
 swap(values[i++], values[j--]);
 }
 swap(values[i], values[last-1]); // put pivot back in place
 return i;
}

Median of three partitioning

62

Quicksort vs MergeSort
! Both run in O(N log N)
! Compared with Quicksort, Merge sort has fewer

comparisons but more swapping (copying)
➡ (not yet able to verify the following):
➡ In Java, an element comparison is expensive but

moving elements is cheap. Therefore, Merge sort is
used in the standard Java library for generic sorting

➡ In C++, copying objects can be expensive while
comparing objects often is relatively cheap.
Therefore, quicksort is the sorting routine commonly
used in C++ libraries

