What is sorting?

- Sort: rearrange the items in a list into ascending or descending order
 - numerical order
 - alphabetical order
 - etc.

Why is sorting important?

- Searching in a sorted list is much easier than searching in an unsorted list.
- Especially for people:
 - dictionary entries (in a dictionary book)
 - phone book (remember these?)
 - card catalog in library (it used to be drawers of index cards)
 - bank statement: transactions in date order
- Most of the data displayed by computers is sorted.

Sorting

- Sorting is one of the most intensively studied operations in computer science
- There are many different sorting algorithms
- The run-time analyses of each algorithm are well-known.
Sorting algorithms covered in this class

- Selection sort
- Insertion sort
- Bubble sort
- Merge sort
- Quicksort
- Heap sort (later, when we talk about heaps)

Selection sort

- There is a pass for each position (0..size-1)
- On each pass, the smallest (minimum) element in the rest of the list is exchanged (swapped) with element at the current position.
- The first part of the list (already processed) is always sorted
- Each pass increases the size of the sorted portion.

Selection Sort: Pass One

```
values [ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]

36 24 10 6 12
```

Selection Sort: End Pass One

```
values [ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]

6 24 10 36 12
```
Selection Sort: Pass Two

values [0]
[1] 6
[2] 24
[3] 10
[4] 36
[5] 12

Selection Sort: End Pass Two

values [0]
[1] 6
[2] 10
[3] 24
[4] 36
[5] 12

Selection Sort: Pass Three

values [0]
[1] 6
[2] 10
[3] 24
[4] 36
[5] 12

Selection Sort: End Pass Three

values [0]
[1] 6
[2] 10
[3] 12
[4] 36
[5] 24
Selection Sort: Pass Four

```
values [ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
 6
10
12
36
24
```

Selection Sort: End Pass Four

```
values [ 0 ]
[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
 6
10
12
24
36
```

Selection sort: code

```cpp
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
    int minIndex = start;
    for (int i = start+1; i < size; i++)
        if (values[i] < values[minIndex])
            minIndex = i;
    return minIndex;
}

template<class ItemType>
void selectionSort (ItemType values[], int size) {
    int min;
    for (int index = 0; index < (size -1); index++) {
        min = minIndex(values, SIZE, index);
        swap(values[min],values[index]);
    }
}
```

```
template <class T> void swap (T& a, T& b); is in the <algorithm> library
```

Efficiency of Selection Sort

- N is the number of elements in the list
- Outer loop (in selectionSort) executes N-1 times
- Inner loop (in minIndex) executes N-1, then N-2, then N-3, ... then once.
- Total number of comparisons (in inner loop):

 \[
 \sum_{k=1}^{n-1} = \frac{n(n+1)}{2}
 \]

 \[
 (N-1) + (N-2) + \ldots + 2 + 1 = \text{the sum of 1 to N-1}
 \]

 From math class:

 \[
 \sum_{k=1}^{n} = \frac{n(n+1)}{2}
 \]

 \[
 (N-1) + (N-2) + \ldots + 2 + 1 = (N-1)(N-1+1)/2
 \]

 \[
 = (N-1)N/2
 \]

 \[
 = (N^2-N)/2
 \]

 \[
 = N^2/2 - N/2
 \]

O(N^2)
Insertion sort

- There is a pass for each position (0..size-1)
- The front of the list remains sorted.
- On each pass, the next element is placed in its proper place among the already sorted elements.
- Like playing a card game, if you keep your hand sorted, when you draw a new card, you put it in the proper place in your hand.
- Each pass increases the size of the sorted portion.

Insertion Sort: Pass One

![Insertion Sort: Pass One Diagram]

Insertion Sort: Pass Two

![Insertion Sort: Pass Two Diagram]

Insertion Sort: Pass Three

![Insertion Sort: Pass Three Diagram]
Insertion sort: code

```cpp
template<class ItemType>
void insertionSort (ItemType a[], int size) {
    for (int index = 1; index < size; index++) {
        ItemType tmp = a[index];  // next element
        int j = index;            // start from the end of sorted part
        // find tmp's place, AND shift bigger elements up
        while (j > 0 && tmp < a[j-1]) {
            a[j] = a[j-1];       // shift bigger element up
            j--;
        }
        a[j] = tmp;             // put tmp in its place
    }
}
```

Insertion sort: runtime analysis

- Very similar to Selection sort
- Total number of comparisons (in inner loop):
 - At most 1, then 2, then 3 ... up to N-1 for the last element.
- So it's
 \[\frac{N^2}{2} - \frac{N}{2} \]

\[O(N^2) \]
Bubble sort

On each pass:
- Compare first two elements. If the first is bigger, they exchange places (swap).
- Compare second and third elements. If second is bigger, exchange them.
- Repeat until last two elements of the list are compared.
- Repeat this process until a pass completes with no exchanges

Example: first pass

- \(7 \rightarrow 2\), swap
- \(2 \rightarrow 7\), swap
- \(2 \rightarrow 2\), no swap
- \(7 \rightarrow 9\), swap
- \(2 \rightarrow 7\), swap

Note: largest element is in last position

Example: second and third pass

- \(2 \rightarrow 3\), no swap, !(8<1), swap
- \(2 \rightarrow 3\), (8<9) no swap
- finished pass 2, did one swap

2 largest elements in last 2 positions

- \(2 \rightarrow 3\), no swap, !(7<1), swap
- \(2 \rightarrow 3\), 7<8<9, no swap
- finished pass 3, did one swap

3 largest elements in last 3 positions

Example: passes 4, 5, and 6

- \(2 \rightarrow 3\), !(3<1) swap, 3<7<8<9
- \(2 \rightarrow 3\)
- finished pass 4, did one swap
- \(2 \rightarrow 3\), !(2<1) swap, 2<3<7<8<9
- \(1 \rightarrow 2\)
- finished pass 5, did one swap
- \(1 \rightarrow 2\), 1<2<3<7<8<9, no swaps
- finished pass 6, no swaps, list is sorted!
Bubble sort
how does it work?

- At the end of the first pass, the largest element is moved to the end (it’s bigger than all its neighbors)
- At the end of the second pass, the second largest element is moved to just before the last element.
- The back end (tail) of the list remains sorted.
- Each pass increases the size of the sorted portion.
- No exchanges implies each element is smaller than its next neighbor (so the list is sorted).

Bubble sort: code

```cpp
template<class ItemType>
void bubbleSort (ItemType a[], int size) {
    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
            if (a[i] > a[i+1]) {
                swap(a[i],a[i+1]);
                swapped = true;
            }
        }
    } while (swapped);
}
```

Bubble sort: runtime analysis

- Each pass makes N-1 comparisons
- There will be at most N passes
 - one to move the right element into each position
- So worst case it’s: \((N-1) \times N = O(N^2) \)
- If you change the algorithm to look at only the unsorted part of the array in each pass, it’s exactly like the selection sort:
 \[
 (N-1) + (N-2) + \ldots + 2 + 1 = N^2/2 - N/2 \quad \text{still } O(N^2)
 \]
- What is the best case for Bubble sort?
- Are there any sorting algorithms better than \(O(N^2) \)?

Merge sort

- Divide and conquer!
- 2 half-sized lists sorted recursively
- the algorithm:
 - if list size is 0 or 1, return (base case) otherwise:
 - recursively sort first half and then second half of list.
 - merge the two sorted halves into one sorted list:
 - choose the smaller of the two first elements, move it to the end of the new sorted list.
 - repeat until one list is empty.
 - move the remaining list’s elements to the end of the new sorted list.
Merge sort

Example

- **Recursively** divide list in half:
 - call mergeSort recursively on each one.

5 2 4 6 1 3 2 6

5 2 4 6

1 3 2 6

5 2 4 6

1 3 2 6

Each of these are sorted (base case length = 1)

Merge sort

Example

- Calls to merge, starting from the bottom:

1 2 2 3 4 5 6 6

2 4 5 6

1 2 3 6

merge

merge

merge

merge

merge

merge

initial sequence

Merge sort

Merging

- How to merge 2 (adjacent) lists:

values

<table>
<thead>
<tr>
<th>first</th>
<th>middle</th>
<th>last</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 13 24 26 2 15 27 38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

temp

| 1 2 |

Now i==middle+1

Now j==last+1

compare values[i] to values[j], copy smaller to temp[k]
Merge sort: code

```cpp
template<class ItemType>
void mergeSortRec (ItemType values[], int first, int last) {
  if (first < last) {
    int middle = (first + last) / 2;
    mergeSortRec(values, first, middle);
    mergeSortRec(values, middle+1, last);
    merge(values, first, middle, last);
  }
}

template<class ItemType>
void mergeSort (ItemType values[], int size) {
  mergeSortRec(values, 0, size-1);
}
```

Merge sort: code: merge

```cpp
template<class ItemType>
void merge (ItemType values[], int first, int middle, int last) {
  ItemType tmp[last-first+1];  //temporary array, could use dynamic alloc.
  int i=first;        //index for left
  int j=middle+1;     //index for right
  int k=0;            //index for tmp
  while (i<=middle && j<=last)   //merge, compare next elem from each array
    if (values[i] < values[j])
      tmp[k++] = values[i++];
    else
      tmp[k++] = values[j++];
  while (i<=middle)           //merge remaining elements from left, if any
    tmp[k++] = values[i++];
  while (j<=last)             //merge remaining elements from right, if any
    tmp[k++] = values[j++];
  for (int i = first; i <=last; i++) //copy from tmp array back to values
    values[i] = tmp[i-first];
}
```

Merge sort: runtime analysis

- Let’s start with a run-time analysis of **merge** (of 2 sorted sublists into one sorted list)
- Let’s use M as the size of the final list
 - The merging requires M (or fewer) comparisons + copies
 - Copying from the temp array is M copies
 - So merge is O(M), worst case

Merge sort: runtime analysis

- **At each level** in the graph (except the top)
 - merge is called on each sub-list
 - The **total** size of each sub-list (M) added up is N
 - the total execution time is O(N) for the level.
- There are \(\log_2 N \) levels in the graph (== how many times can I divide N by 2 (until it’s <=1))?
- So \(\log_2 N \) levels times O(N) at each level:

\[O(N \log N) \]
Merge sort

- **Runtime analysis**
 - O(N) work done between each level (for merging):

 ![Diagram of merge sort runtime analysis]

Merge sort: runtime analysis

- mergeSort has 2 recursive calls to itself.
- Why does it not have the exponential cost that the Fibonacci algorithm had?

Quicksort

- Another divide and conquer!
- 2 (hopefully) half-sized lists sorted recursively
- the algorithm:
 - If list size is 0 or 1, return. otherwise:
 - **partition** into two lists:
 - pick one element as the “pivot” element
 - put all elements less than pivot in first half
 - put all elements greater than pivot in second half
 - recursively sort first half and then second half of list.

Quicksort Example
Quicksort: partitioning

- **Goal:** partition a sub-array \(A \) [start ... last] by rearranging the elements and returning the index of the pivot point \(p \) so that:
- **the algorithm:**
 - pick a pivot elem and swap with last elem
 - let \(i = \) first and \(j = \) last -1

\[
\begin{align*}
5 & \ 6 & \ 4 & \ 3 & \ 12 & \ 19 \\
\text{pivot} & \ 5 & \ 6 & \ 4 & \ 19 & \ 3 & \ 12 & \ 6
\end{align*}
\]

\(i \)
\(j \)

- **the algorithm (continued):**
 - increment \(i \) while \(A[i] < A[\text{last}] \) (the pivot)
 - decrement \(j \) while \(A[j] > A[\text{last}] \) (the pivot)

\[
\begin{align*}
5 & \ 6 & \ 4 & \ 19 & \ 3 & \ 12 & \ 6 \\
\text{pivot} & \ 5 & \ 6 & \ 4 & \ 19 & \ 3 & \ 12 & \ 6
\end{align*}
\]

\(i \)
\(j \)

- When \(i \) and \(j \) have stopped,
 - if \(i < j \): swap \(A[i] \) and \(A[j] \); \(i++ \); \(j-- \)
 - maintains: \(A[x] \leq \text{pivot} \) for \(x \leq i \) and \(A[x] \geq \text{pivot} \) for \(x \geq j \)
Quicksort: partitioning

- the algorithm (continued):
 - repeat until i and j have met (i==j)* or crossed (i > j):
 - swap A[i] and pivot (A[last])
 - A[i] >= pivot (i stopped there, so A[i] >= pivot)
 - puts pivot back in place
 - return i (the pivot index)

*Note: if i==j, A[j] must be the pivot value, otherwise either A[i]<pivot so i would not have stopped, or A[j]>pivot, so j would not have stopped.

Quicksort: code

version 1

```cpp
template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
    if (first < last) {    //at least two elems
        int pivotPoint;
        // partition and get the pivot point (the index)
        pivotPoint = partition(values, first, last);
        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    }
}
```

```cpp
template<class ItemType>
void quickSort (ItemType values[], int size) {
    quickSort(values, 0, size-1);
}
```

Quicksort: runtime analysis

- Choice of pivot point dramatically affects running time.
- Best Case
 - Pivot partitions the set into 2 equally sized subsets at each stage of recursion: O(log N) levels
 (== how many times can I divide N by 2 (until it's <=1))
 - Partitioning at each level is O(N)
 - each element is compared to the pivot and maybe moved one time
 - O(N log N)
Quicksort: runtime analysis

• Worst Case
 - Pivot is always the smallest element, partitioning the set into one empty subset, and one of size N-1.
 - Partitioning at each level is N
 ◦ \(T(N) = T(N-1) + N \) (time to sort N-1 plus N for partitioning)
 ◦ \(T(N) = N + N-1 + \ldots + 2 + 1 \) (from unwinding the above)
 ◦ \(T(N) = N(N+1)/2 \)
 - \(O(N^2) \)

Moral of the story: it pays to pick a good pivot point

Quicksort: runtime analysis

• Average Case
 - Assume left side is equally likely to have a size of 0 or 1 or 2 or ... or N elements (a random distribution)
 - \(O(N \log N) \)
 ◦ Not a trivial proof . . . most of it is in the Weiss book.

Quicksort: Picking the pivot

• Goal: ensure the worst case doesn’t happen.
 • Picking a pivot randomly is safe
 - but random number generation can be expensive
 • Using the first element:
 - if the input is randomly ordered, this is ok.
 - if the input is sorted, all elements are in right half, this is the worst case = \(O(N^2) \)
 • Use the median value (the middle value in order):
 - perfectly divides into two even sides
 - but you have to sort the list to find the median: \(^5\)

Quicksort: Picking the pivot

• For the pivot value:
 - Take the three values at the first, last, and middle positions in the list.
 - Throw out the max and min values.
 - Use the remaining value as the pivot value.

• This is an “estimate” of the real median
 - taking median of more than 3 is not worth the time
Quicksort: Picking the pivot

Median of Three method

- Median-of-Three partitioning:
 - arrange the values (by swapping) at the first, last and middle positions so that:
 \[A[\text{first}] \leq A[\text{middle}] \leq A[\text{last}] \]
 - (this puts the median of the 3 in the middle).
 - swap pivot \(A[\text{middle}] \) with \(A[\text{last}-1] \).
 - start with \(i = \text{first}+1 \) and \(j = \text{last}-2 \)
 (\(A[\text{first}] \) and \(A[\text{last}] \) are already in place).
 - use same algorithm as original partitioning.

Quicksort: Small Arrays

- For very small arrays, quicksort does not perform as well as insertion sort
 - how small depends on many factors, such as the time spent making a recursive call, the compiler, etc
- Do not use quicksort recursively for small arrays
 - Instead, use a sorting algorithm that is efficient for small arrays, such as insertion sort
 - a cutoff between 5 and 20 is good.
- Note: median of three partitioning requires at least 3 elements anyway

Quicksort: code

version 2

```cpp
const in CUTOFF = 10;

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
  int pivotPoint;
  if (first + CUTOFF <= last) {  // more than CUTOFF elems
    pivotPoint = partition(values, first, last);
    quickSort(values, first, pivotPoint - 1);
    quickSort(values, pivotPoint + 1, last);
  } else {
    insertionSort(values, first, last);  //base case
  }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
  quickSort(values, 0, size-1);
}
```

Note: rewrite insertion sort for this signature:
```cpp
insertionSort(ItemType values[], int first, int last);
```
Quicksort: code

version 2

```cpp
template<class ItemType>
int partition(ItemType values[], int first, int last) {
    // sort first, mid, last
    int mid = (first + last) / 2;
    if (values[mid] < values[first]) swap(values[mid], values[first]);
    if (values[last] < values[first]) swap(values[last], values[first]);
    if (values[last] < values[mid]) swap(values[last], values[mid]);

    ItemType pivotValue = values[mid]; // move pivot to last-1
    swap(values[last-1], values[mid]);

    int i=first+1, j=last-2; // do the partitioning
    while (i<j) {
        while (values[i] < pivotValue) {i++;}
        while (pivotValue < values[j]) {j--;}
        if (i < j)
            swap(values[i++], values[j--]);
    }
    swap(values[i], values[last-1]); // put pivot back in place
    return i;
}
```

Quicksort vs MergeSort

- Both run in O(N log N)
- Compared with Quicksort, Merge sort has fewer comparisons but more swapping (copying)
 - (not yet able to verify the following):
 - In Java, an element comparison is expensive but moving elements is cheap. Therefore, Merge sort is used in the standard Java library for generic sorting
 - In C++, copying objects can be expensive while comparing objects often is relatively cheap. Therefore, quicksort is the sorting routine commonly used in C++ libraries