Sorting Algorithms

Chapter 9

CS 3358
Spring 2015
Jill Seaman

Sections 9.1, 9.2, 9.3, 9.5, 9.6

Why is sorting important?

- Searching in a sorted list is much easier than searching in an unsorted list.
- Especially for people:
dictionary entries (in a dictionary book)
phone book (remember these?)
- card catalog in library (it used to be drawers of index cards)
bank statement: transactions in date order
- Most of the data displayed by computers is sorted.

What is sorting?

- Sort: rearrange the items in a list into ascending or descending order - numerical order
- alphabetical order
- etc.

$\begin{array}{llllllllll}55 & 112 & 78 & 14 & 20 & 179 & 42 & 67 & 190 & 7101 \\ 1 & 122 & 1708\end{array}$
178142042556778101112122170179190
2

Sorting

- Sorting is one of the most intensively studied operations in computer science
- There are many different sorting algorithms
- The run-time analyses of each algorithm are well-known.

Sorting algorithms covered in this class

- Selection sort
- Insertion sort
- Bubble sort
- Merge sort
- Quicksort
- Heap sort (later, when we talk about heaps)

Selection Sort: Pass One

Selection sort

- There is a pass for each position (0..size-1)
- On each pass, the smallest (minimum) element in the rest of the list is exchanged (swapped) with element at the current position.
- The first part of the list (already processed) is always sorted
- Each pass increases the size of the sorted portion.

Selection Sort: End Pass One

values $[0]$	6
$[1]$	24
$[2]$	10
$[43]$	36
	$14]$

Selection Sort: Pass Two

Selection Sort: End Pass Two

Selection Sort: Pass Four

values $[0]$	6
$[1]$	10
$[2]$	12
$[3]$	24
	34

S

E
D

Selection Sort: End Pass Four

Selection sort: code

```
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
    int minIndex = start;
    for (int i = start+1; i < size; i++)
        if (values[i] < values[minIndex])
            minIndex = i;
    return minIndex;
```

\}
template<class ItemType>
void selectionSort (ItemType values[], int size) \{
int min;
for (int index $=0$; index $<($ size -1$)$; index++) \{
min $=$ minIndex(values, SIZE, index);
swap(values[min], values[index]);
\}
\}

Efficiency of Selection Sort

- N is the number of elements in the list
- Outer loop (in selectionSort) executes $\mathrm{N}-1$ times
- Inner loop (in minIndex) executes N-1, then N-2, then $\mathrm{N}-3$, ... then once.
- Total number of comparisons (in inner loop):
$(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=$ the sum of 1 to $\mathrm{N}-1$
From math class: $\quad \sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
$(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=(\mathrm{N}-1)(\mathrm{N}-1+1) / 2$
$=(\mathrm{N}-1) \mathrm{N} / 2$
$=\left(\mathrm{N}^{2}-\mathrm{N}\right) / 2$
$=N^{2} / 2-N / 2$

Insertion sort

- There is a pass for each position (0..size-1)
- The front of the list remains sorted.
- On each pass, the next element is placed in its proper place among the already sorted elements.
- Like playing a card game, if you keep your hand sorted, when you draw a new card, you put it in the proper place in your hand.
- Each pass increases the size of the sorted portion.

Insertion Sort: Pass Two

values $[0]$	36
$[4]$	24
	$[2]$
	10
$[4]$	6

Insertion Sort: Pass Four

values $[0]$	6
$[1]$	10
$[2]$	24
$[3]$	36
	12

25

Insertion Sort: Pass Five

Insertion sort: code
template<class ItemType>
void insertionSort (ItemType a[], int size) \{

```
for (int index \(=1\); index < size; index++) \{ ItemType tmp = a[index]; // next element
```

int $j=$ index; // start from the end of sorted part
// find tmp's place, AND shift bigger elements up while (j>0 \&\& tmp < a[j-1]) \{
$a[j]=a[j-1] ; / /$ shift bigger element up j--;
\}
$a[j]=$ tmp;
// put tmp in its place

```
}
```

\}

Insertion sort: runtime analysis

- Very similar to Selection sort
- Total number of comparisons (in inner loop):
- At most 1 , then 2 , then 3 ... up to $\mathrm{N}-1$ for the last element.
- So it's

$$
(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1==\mathrm{N}^{2} / 2-\mathrm{N} / 2
$$

Bubble sort

- On each pass:

Compare first two elements. If the first is bigger, they exchange places (swap).
Compare second and third elements. If second is bigger, exchange them.
Repeat until last two elements of the list are compared.

- Repeat this process until a pass completes with no exchanges

Bubble sort

Example: second and third pass
-237819 2<3<7<8, no swap, !(8<1), swap
-237189 (8<9) no swap

- finished pass 2 , did one swap

2 largest elements in last 2 positions

- $237189 \quad 2<3<7$, no swap, !(7<1), swap
- 231789 7<8<9, no swap
- finished pass 3, did one swap

Bubble sort
 Example: first pass

-723891 7 > 2, swap
-273891 7 > 3, swap
-237891 ! (7>8), no swap
-237891 !(8 > 9), no swap
-237891 $9>1$, swap

- 23781 9 finished pass 1, did 3 swaps

Note: largest element is in last position

Bubble sort

Example: passes 4, 5, and 6

- $231789 \quad 2<3$, ! ($3<1$) swap, $3<7<8<9$
- $21 \underline{3789}$
- finished pass 4, did one swap
- 213789 ! ($2<1$) swap, $2<3<7<8<9$
-123789
- finished pass 5 , did one swap
- $123789 \quad 1<2<3<7<8<9$, no swaps
- finished pass 6 , no swaps, list is sorted!

Bubble sort
 how does it work?

- At the end of the first pass, the largest element is moved to the end (it's bigger than all its neighbors)
- At the end of the second pass, the second largest element is moved to just before the last element.
- The back end (tail) of the list remains sorted.
- Each pass increases the size of the sorted portion.
- No exchanges implies each element is smaller than its next neighbor (so the list is sorted).

Bubble sort: code

```
template<class ItemType>
void bubbleSort (ItemType a[], int size) {
    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
            if (a[i] > a[i+1]) {
            swap(a[i],a[i+1]);
            swapped = true;
            }
        }
    } while (swapped);
}
```


Bubble sort: runtime analysis

- Each pass makes N-1 comparisons
- There will be at most N passes
- one to move the right element into each position
- So worst case it's: (N-1)*N O(N2)
- If you change the algorithm to look at only the unsorted part of the array in each pass, it's exactly like the selection sort:

$$
(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+2+1=\mathrm{N}^{2} / 2-\mathrm{N} / 2
$$

still $\mathrm{O}\left(\mathrm{N}^{2}\right)$

- What is the best case for Bubble sort?
- Are there any sorting algorithms better than $\mathrm{O}^{\mathrm{O}}\left(\mathrm{N}^{2}\right)$?

Merge sort

- Divide and conquer!
- 2 half-sized lists sorted recursively
- the algorithm:
- if list size is 0 or 1 , return (base case) otherwise: - recursively sort first half and then second half of list.
- merge the two sorted halves into one sorted list.
+ choose the smaller of the two first elements, move it to the end of the new sorted list.
+ repeat until one list is empty.
+ move the remaining list's elements to the end of the new sorted list.

Merge sort
 Example

- Recursively divide list in half:
- call mergeSort recursively on each one.

Each of these are sorted (base case length =1)

Merge sort

Merging

- How to merge 2 (adjacent) lists:

values | 1 | 13 | 24 | 26 | 2 | 15 | 27 | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | first | middle | | | | | |
| | | last | | | | | | temp

1	13	24	26	2	15	27	38

i							
1	13	24	26	2	15	27	38

i							
1	13	24	26	2	15	27	38

1	13	24	26	2	15	27	38

Merge sort

Example

- Calls to merge, starting from the bottom:

Merge sort

Merging

- Continued:

| 1 | 13 | 24 | 26 | 2 | 15 | 27 | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \quad$| 1 | 2 | 13 | 15 | 24 | 26 | 27 | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Merge sort: code

```
template<class ItemType>
void mergeSortRec (ItemType values[], int first, int last) {
    if (first < last) {
        int middle = (first + last) / 2;
        mergeSortRec(values, first, middle);
        mergeSortRec(values, middle+1, last);
        merge(values, first, middle, last);
    }
}
template<class ItemType>
void mergeSort (ItemType values[], int size) {
    mergeSortRec(values, 0, size-1);
}
```


Merge sort: runtime analysis

- Let's start with a run-time analysis of merge (of 2 sorted sublists into one sorted list)
- Let's use M as the size of the final list
- The merging requires M (or fewer) comparisons +copies
Copying from the temp array is M copies
So merge is $\mathrm{O}(\mathrm{M})$, worst case

Merge sort: code: merge

template<class ItemType>
void merge(ItemType values[], int first, int middle, int last) \{
ItemType tmp[last-first+1]; //temporary array, could use dynamic alloc.

$$
\begin{array}{ll}
\text { int } i=\text { first; } & \text { //index for left } \\
\text { int } j=\text { middle }+1 ; & \text { //index for right } \\
\text { int } k=0 ; & \text { //index for tmp }
\end{array}
$$

while (i<=middle \&\& j<=last) //merge, compare next elem from each array if (values[i] < values[j]) tmp [k++] = values[i++];
else

$$
\operatorname{tmp}[k++]=\text { values }[j++] ;
$$

while (i<=middle)
//merge remaining elements from left, if any tmp $[k++]=$ values $[i++] ;$
while (j<=last) //merge remaining elements from right, if any tmp [k++] = values[j++];
for (int i = first; i <=last; i++) //copy from tmp array back $\frac{7}{8} 9$ values values[i] = tmp[i-first];

Merge sort: runtime analysis

- At each level in the graph (except the top)
- merge is called on each sub-list
- The total size of each sub-list (M) added up is N
- the total execution time is $\mathrm{O}(\mathrm{N})$ for the level.
- There are $\log _{2} \mathrm{~N}$ levels in the graph (== how many times can I divide N by 2 (until it's $<=1$))?
- So $\log _{2} N$ levels times $O(N)$ at each level:

Merge sort

Runtime analysis

- $\mathrm{O}(\mathrm{N})$ work done between each level (for merging):

N

N

Merge sort: runtime analysis

- mergeSort has 2 recursive calls to itself.
- Why does it not have the exponential cost that the Fibonacci algorithm had?

Quicksort

- Another divide and conquer!
- 2 (hopefully) half-sized lists sorted recursively
- the algorithm:
- If list size is 0 or 1, return. otherwise:

partition into two lists:

* pick one element as the "pivot" element
* put all elements less than pivot in first half
- put all elements greater than pivot in second half recursively sort first half and then second half of list.

Quicksort
Example

partitio

Quicksort
 Example cont.

Quicksort: partitioning

- Goal: partition a sub-array A [start ... last] by rearranging the elements and returning the index of the pivot point p so that:
- $A[x]<=A[p]$ for $x<p$ and $A[x]>=A[p]$ for $x>p$
- the algorithm:
- pick a pivot elem and swap with last elem
- let $\mathrm{i}=$ first and $\mathrm{j}=$ last -1

pivot
46

Quicksort: partitioning

- the algorithm (continued):
- increment i while A[i] < A[last] (the pivot)
- decrement j while A[j] > A[last] (the pivot)

Quicksort: partitioning

- the algorithm (continued):
- When i and j have stopped,
- if $\mathrm{i}<\mathrm{j}$: swap A[i] and A[j]; i++; j--;
- maintains: $A[x]<=$ pivot for $x<=i$ and $A[x]>=$ pivot for $x>=j$

Quicksort: partitioning

- the algorithm (continued):

```
- repeat until i and j have met (i==j)*
or crossed (i > j):
swap A[i] and pivot (A[last])
    - A[i] >= pivot (i stopped there,
    so A[i] >= pivot)
    puts pivot back in place
return i (the pivot index)
```


*Note: if $\mathrm{i}=\mathrm{j}, \mathrm{A}[\mathrm{j}]$ must be the pivot value, otherwise either $A[i]<p i v o t ~ s o ~ i ~ w o u l d ~ n o t ~ h a v e ~ s t o p p e d, ~$ or $\mathrm{A}[\mathrm{j}]>$ pivot, so j would not have stopped.

Quicksort: code

version 1

template<class ItemType>
int partition(ItemType values[], int first, int last) \{
int mid $=($ first + last $) / 2$; //use middle value as pivot
ItemType pivotValue = values[mid];
swap(values[last], values[mid]); //move pivot to end
int $i=f i r s t, j=1$ ast -1 ;
while (i<j) \{
while (values[i] < pivotValue) \{i++;\}
while (values[j] > pivotValue) \{j--;\}
if (i<j) \{
swap(values[i++], values[j--]);
\}
\}
swap(values[i], values[last]); //replace pivot
return i;
\}

Quicksort: code

version 1

```
template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
    if (first < last) { //at least two elems
        int pivotPoint;
        // partition and get the pivot point (the index)
        pivotPoint = partition(values, first, last);
        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    }
}
template<class ItemType>
void quickSort (ItemType values[], int size) {
    quickSort(values, 0, size-1);
}
```


Quicksort: runtime analysis

- Choice of pivot point dramatically affects running time.
- Best Case
- Pivot partitions the set into 2 equally sized subsets at each stage of recursion: $\mathrm{O}(\log \mathrm{N})$ levels
(== how many times can I divide N by 2 (until it's <=1))
- Partitioning at each level is $\mathrm{O}(\mathrm{N})$
* each element is compared to the pivot and maybe moved one time
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Quicksort: runtime analysis

- Worst Case

Pivot is always the smallest element, partitioning the set into one empty subset, and one of size $\mathbf{N}-1$.
Partitioning at each level is N

* $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{N}$ (time to sort $\mathrm{N}-1$ plus N for partitioning)
* $\mathrm{T}(\mathrm{N})=\mathrm{N}+\mathrm{N}-1+\ldots+2+1 \quad$ (from unwinding the above)
* $T(N)=N(N+1) / 2$
$-\mathrm{O}\left(\mathrm{N}^{2}\right)$

Moral of the story: it pays to pick a good pivot point

Quicksort: Picking the pivot

- Goal: ensure the worst case doesn't happen.
- Picking a pivot randomly is safe
- but random number generation can be expensive
- Using the first element:
- if the input is randomly ordered, this is ok.
- if the input is sorted, all elements are in right half, this is the worst case $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Use the median value (the middle value in order): perfectly divides into two even sides
- but you have to sort the list to find the medians.

Quicksort: runtime analysis

- Average Case

- Assume left side is equally likely to have a size of 0 or 1 or 2 or ... or N elements (a random distribution)
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Not a trivial proof . . . most of it is in the Weiss book.

Quicksort: Picking the pivot

- For the pivot value:
- Take the three values at the first, last, and middle positions in the list.
- Throw out the max and min values.
- Use the remaining value as the pivot value.
- This is an "estimate" of the real median - taking median of more than 3 is not worth the time

Quicksort: Picking the pivot

Median of Three method

- Median-of-Three partitioning:
arrange the values (by swapping) at the first, last and middle positions so that:

A[first] <= A[middle] <= A[last]
(this puts the median of the 3 in the middle).

- swap pivot (A[middle]) with A[last-1].
- start with $i=$ first+1 and $j=$ last-2 (A[first] and A[last] are already in place).
- use same algorithm as original partitioning.

Quicksort: Small Arrays

- For very small arrays, quicksort does not perform as well as insertion sort
- how small depends on many factors, such as the time spent making a recursive call, the compiler, etc
- Do not use quicksort recursively for small arrays
- Instead, use a sorting algorithm that is efficient for small arrays, such as insertion sort
- a cutoff between 5 and 20 is good.
- Note: median of three partitioning requires at least 3 elements anyway

Quicksort: Picking the pivot
Median of Three method

| 2 | 5 | 6 | 4 | 13 | 3 | 12 | 19 | 6 | A[left] $=2$, A[center] $=13$, A[right] $=6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Now we only need to partition A[left + 1, \ldots, right -2]. 58

Quicksort: code

version 2
const in CUTOFF = 10;
template<class ItemType>
void quickSort (ItemType values[], int first, int last) \{ int pivotPoint;
if (first + CUTOFF <= last) \{ // more than CUTOFF elems pivotPoint = partition(values, first, last); quickSort(values, first, pivotPoint - 1); quickSort(values, pivotPoint + 1, last);
\} else \{
insertionSort(values, first,last); //base case
template<class ItemType>
void quickSort (ItemType values[], int size) \{
quickSort(values, 0, size-1);

Quicksort: code

version 2
 Median of three partitioning

template<class ItemType>
int partition(ItemType values[], int first, int last) \{ //sort first, mid, last
int mid $=($ first + last) / 2;
if (values[mid] < values[first]) swap(values[mid], values[first]);
if (values[last] < values[first]) swap(values[last], values[first]);
if (values[last] < values[mid]) swap(values[last], values[mid]);
ItemType pivotValue = values[mid]; // move pivot to last-1 swap(values[last-1], values[mid]);

```
int i=first+1,j=last-2;
                    // do the partitioning
```

while (i<j) \{
while (values[i] < pivotValue) \{i++;\}
while (pivotValue < values[j]) \{j--;\}
if (i<j)
swap(values[i++], values[j--])
\}
swap(values[i], values[last-1]); // put pivot back in place
return i;

Quicksort vs MergeSort

- Both run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

- Compared with Quicksort, Merge sort has fewer comparisons but more swapping (copying)
- (not yet able to verify the following):
- In Java, an element comparison is expensive but moving elements is cheap. Therefore, Merge sort is used in the standard Java library for generic sorting
- In C++, copying objects can be expensive while comparing objects often is relatively cheap. Therefore, quicksort is the sorting routine commonly used in C++ libraries

