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What is sorting?

! Sort: rearrange the items in a list 
into ascending or descending order 
- numerical order 
- alphabetical order 
- etc. 

55  112  78  14  20  179  42  67  190  7 101 1 122  170 8 

1  7  8  14  20  42  55  67  78  101  112  122 170 179 190 
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Why is sorting important?
! Searching in a sorted list is much easier than 

searching in an unsorted list. 
! Especially for people: 
- dictionary entries (in a dictionary book) 
- phone book (remember these?) 
- card catalog in library (it used to be drawers of index 

cards) 
- bank statement: transactions in date order  

! Most of the data displayed by computers is 
sorted. 4

Sorting

! Sorting is one of the most intensively studied 
operations in computer science 

! There are many different sorting algorithms 

! The run-time analyses of each algorithm are 
well-known.
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Sorting algorithms  
covered in this class

! Selection sort 
! Insertion sort 
! Bubble sort 

! Merge sort 
! Quicksort 

! Heap sort (later, when we talk about heaps)
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Selection sort

! There is a pass for each position (0..size-1) 
! On each pass, the smallest (minimum) element 

in the rest of the list is exchanged (swapped) 
with element at the current position. 

! The first part of the list (already processed) is 
always sorted 

! Each pass increases the size of the sorted 
portion.
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Selection Sort: Pass One 
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Selection Sort: End Pass One 
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SORTED

Selection Sort: Pass Two 
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Selection Sort: End Pass Two 
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Selection Sort: Pass Three 
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Selection Sort: End Pass Three 
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Selection Sort: Pass Four 
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Selection Sort: End Pass Four
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Selection sort: code
template<class ItemType>
int minIndex(ItemType values[], int size, int start) {
    int minIndex = start;
    for (int i = start+1; i < size; i++) 
        if (values[i] < values[minIndex]) 
            minIndex = i;
    return minIndex;
} 

template<class ItemType>
void selectionSort (ItemType values[], int size) {
    int min;
    for (int index = 0; index < (size -1); index++) {
        min = minIndex(values, SIZE, index);
        swap(values[min],values[index]);
    }
}

template <class T> void swap (T& a, T& b); is in the <algorithm> library 16

Efficiency of Selection Sort

! N is the number of elements in the list 
! Outer loop (in selectionSort) executes N-1 times 
! Inner loop (in minIndex) executes N-1, then N-2, 

then N-3, ... then once. 
! Total number of comparisons (in inner loop):

   (N-1) + (N-2) + . . . + 2 + 1      = (N-1)(N-1+1)/2  
                                                   = (N-1)N/2 
                                                   = (N2-N)/2 
                                                   = N2/2 - N/2 O(N2)

(N-1) + (N-2) + . . . + 2 + 1  =  the sum of 1 to N-1

From math class:
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Insertion sort

! There is a pass for each position (0..size-1) 
! The front of the list remains sorted. 
! On each pass, the next element is placed in its 

proper place among the already sorted 
elements. 

! Like playing a card game, if you keep your hand 
sorted, when you draw a new card, you put it in 
the proper place in your hand. 

! Each pass increases the size of the sorted 
portion.

22

Insertion Sort: Pass One 
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Insertion Sort: Pass Two 
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Insertion Sort: Pass Three 
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Insertion Sort: Pass Four

   

values  [ 0 ]        

  [ 1 ] 

  [ 2 ] 
  
  

             [ 3 ] 

   [ 4 ]

 6 

10 

24 

36 

12

S 
O 
R 
T 
E 
D

UNSORTED

26

Insertion Sort: Pass Five
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Insertion sort: code

template<class ItemType>
void insertionSort (ItemType a[], int size) {
    
    for (int index = 1; index < size; index++) {
        ItemType tmp = a[index];   // next element 
        
        int j = index;    // start from the end of sorted part

        // find tmp's place, AND shift bigger elements up
        while (j > 0 && tmp < a[j-1]) {
            a[j] = a[j-1];   // shift bigger element up
            j--;
        }
        a[j] = tmp;          // put tmp in its place
    }
}

24

Insertion sort: runtime analysis

! Very similar to Selection sort 
! Total number of comparisons (in inner loop): 
- At most 1, then 2, then 3 ... up to N-1 for the last 

element. 
! So it’s 

O(N2)

(N-1) + (N-2) + . . . + 2 + 1 == N2/2 - N/2
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Bubble sort

! On each pass: 
- Compare first two elements. If the first is bigger, they 

exchange places (swap).  
- Compare second and third elements.  If second is 

bigger, exchange them. 
- Repeat until last two elements of the list are 

compared.  
! Repeat this process until a pass completes with 

no exchanges

26

Bubble sort 
Example: first pass

! 7 2 3 8 9 1  7 > 2, swap        
! 2 7 3 8 9 1  7 > 3, swap        
! 2 3 7 8 9 1  !(7 > 8), no swap        
! 2 3 7 8 9 1  !(8 > 9), no swap        
! 2 3 7 8 9 1  9 > 1, swap        
! 2 3 7 8 1 9  finished pass 1, did 3 swaps        

Note: largest element is in last position

27

Bubble sort 
Example: second and third pass

! 2 3 7 8 1 9    2<3<7<8, no swap, !(8<1), swap  
! 2 3 7 1 8 9    (8<9) no swap 
! finished pass 2, did one swap 

! 2 3 7 1 8 9    2<3<7, no swap, !(7<1), swap  
! 2 3 1 7 8 9    7<8<9, no swap 
! finished pass 3, did one swap

2 largest elements in last 2 positions

3 largest elements in last 3 positions

28

Bubble sort 
Example: passes 4, 5, and 6

! 2 3 1 7 8 9     2<3, !(3<1) swap, 3<7<8<9  
! 2 1 3 7 8 9 
! finished pass 4, did one swap 
! 2 1 3 7 8 9     !(2<1) swap, 2<3<7<8<9  
! 1 2 3 7 8 9 
! finished pass 5, did one swap 
! 1 2 3 7 8 9      1<2<3<7<8<9, no swaps 
! finished pass 6, no swaps, list is sorted!
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Bubble sort 
how does it work?

! At the end of the first pass, the largest element is 
moved to the end (it’s bigger than all its 
neighbors) 

! At the end of the second pass, the second largest 
element is moved to just before the last element. 

! The back end (tail) of the list remains sorted. 
! Each pass increases the size of the sorted 

portion. 
! No exchanges implies each element is smaller 

than its next neighbor (so the list is sorted).
30

Bubble sort: code

template<class ItemType>
void bubbleSort (ItemType a[], int size) {

    bool swapped;
    do {
        swapped = false;
        for (int i = 0; i < (size-1); i++) {
            if (a[i] > a[i+1]) {                
                swap(a[i],a[i+1]);
                swapped = true;
            }
        }
    } while (swapped);
}
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Bubble sort: runtime analysis
! Each pass makes N-1 comparisons 
! There will be at most N passes 
- one to move the right element into each position 

! So worst case it’s: 
! If you change the algorithm to look at only the 

unsorted part of the array in each pass, it’s 
exactly like the selection sort: 

! What is the best case for Bubble sort?  
! Are there any sorting algorithms better than O(N2)?

O(N2) (N-1)*N

(N-1) + (N-2) + . . . + 2 + 1  =  N2/2 - N/2 still O(N2)
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Merge sort
! Divide and conquer! 
! 2 half-sized lists sorted recursively 
! the algorithm: 
- if list size is 0 or 1, return (base case)  otherwise:  
- recursively sort first half and then second half of list. 
- merge the two sorted halves into one sorted list.  

✦ choose the smaller of the two first elements, move it to the 
end of the new sorted list. 

✦ repeat until one list is empty. 
✦ move the remaining list’s elements to the end of the new 

sorted list.
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Merge sort 
Example

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

! Recursively divide list in half: 
- call mergeSort recursively on each one.

Each of these are sorted (base case length = 1)
34

Merge sort 
Example

! Calls to merge, starting from the bottom: 
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Merge sort 
Merging

! How to merge 2 (adjacent) lists:

1 13 24 26 2 15 27 38
first middle last k

tempvalues

1 13 24 26 2 15 27 38
i j k

1 13 24 26 2 15 27 38
i j

1
k

1 13 24 26 2 15 27 38
i j

1 2
k

1 13 24 26 2 15 27 38
i j

1 2 13
k

compare values[i] to values[j], copy smaller to temp[k]

Merge sort 
Merging

! Continued:

1 13 24 26 2 15 27 38 1 2 13 15
k

tempvalues

1 13 24 26 2 15 27 38
i j

1 2 13 15 24
k

1 13 24 26 2 15 27 38
i j

1 2 13 15 24 26
k

1 13 24 26 2 15 27 38
i j

1 2 13 15 24 26 27
k

1 13 24 26 2 15 27 38
i j

1 2 13 15 24 26 27 38
k

Now i==middle+1

i j

Now j==last+1 copy temp to values
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Merge sort: code

template<class ItemType>
void mergeSortRec (ItemType values[], int first, int last) {
    if (first < last) {
        int middle = (first + last) / 2;

        mergeSortRec(values, first, middle);
        mergeSortRec(values, middle+1, last);
        
        merge(values, first, middle, last);
    }
}

template<class ItemType>
void mergeSort (ItemType values[], int size) {
    mergeSortRec(values, 0, size-1);
}
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Merge sort: code: merge
template<class ItemType>
void merge(ItemType values[], int first, int middle, int last) {
    
    ItemType tmp[last-first+1];  //temporary array, could use dynamic alloc.
    int i=first;        //index for left
    int j=middle+1;     //index for right
    int k=0;            //index for tmp
    
    while (i<=middle && j<=last)   //merge, compare next elem from each array
        if (values[i] < values[j])
            tmp[k++] = values[i++];
        else
            tmp[k++] = values[j++];
    
    while (i<=middle)           //merge remaining elements from left, if any
        tmp[k++] = values[i++];
    
    while (j<=last)             //merge remaining elements from right, if any
        tmp[k++] = values[j++];
    
    for (int i = first; i <=last; i++) //copy from tmp array back to values
        values[i] = tmp[i-first];
} 
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Merge sort: runtime analysis

! Let’s start with a run-time analysis of merge  
(of 2 sorted sublists into one sorted list) 

! Let’s use M as the size of the final list 
- The merging requires M (or fewer) comparisons

+copies 
- Copying from the temp array is M copies 
- So merge is O(M), worst case
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Merge sort: runtime analysis

! At each level in the graph (except the top) 
- merge is called on each sub-list 
- The total size of each sub-list (M) added up is N 
- the total execution time is O(N) for the level. 

! There are log2 N levels in the graph (== how 
many times can I divide N by 2 (until it’s <=1))? 

! So log2 N levels times O(N) at each level: 

O(N Log N)
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Merge sort 
Runtime analysis

! O(N) work done between each level (for merging): 

N

N

N

O(2) O(2) O(2) O(2)

O(4)O(4)

O(8)
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Merge sort: runtime analysis

! mergeSort has 2 recursive calls to itself. 
! Why does it not have the exponential cost that 

the Fibonacci algorithm had?

43

Quicksort

! Another divide and conquer! 
! 2 (hopefully) half-sized lists sorted recursively 
! the algorithm: 
- If list size is 0 or 1, return.   otherwise:  
- partition into two lists: 

❖ pick one element as the “pivot” element 
❖ put all elements less than pivot in first half 
❖ put all elements greater than pivot in second half 

- recursively sort first half and then second half of list. 
44

Quicksort 
Example
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Quicksort 
Example cont.

46

Quicksort: partitioning
! Goal: partition a sub-array A [start ... last]   

by rearranging the elements and returning the 
index of the pivot point p so that: 
- A[x]<=A[p] for x<p and A[x]>=A[p] for x>p 

! the algorithm:  
- pick a pivot elem and swap with last elem 
- let i = first and j = last -1

i j

5 6 4 6 3 12 19 5 6 4 63 1219

swap

pivot
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Quicksort: partitioning

! the algorithm (continued): 
- increment i while A[i] < A[last] (the pivot) 
- decrement j while A[j] > A[last] (the pivot)

i j

5 6 4 63 1219

i j

5 6 4 63 1219
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Quicksort: partitioning

! the algorithm (continued): 
- When i and j have stopped,  
- if i < j:  swap A[i] and A[j];    i++;  j--; 
- maintains: A[x] <= pivot for x<=i and A[x] >= pivot for x >= j

swap

i j

5 6 4 63 1219

i j

5 3 4 66 1219
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Quicksort: partitioning
! the algorithm (continued): 
- repeat until i and j have met (i==j)* 

or crossed (i > j): 
- swap A[i] and pivot (A[last]) 
- A[i] >= pivot (i stopped there, 

so A[i] >= pivot) 
- puts pivot back in place 

- return i (the pivot index) 

i j

5 3 4 66 1219

ij

5 3 4 66 1219

ij

5 3 4 6 6 12 19

*Note: if i==j, A[j] must be the pivot value, otherwise 
either A[i]<pivot so i would not have stopped,
or A[j]>pivot, so j would not have stopped. 50

Quicksort: code 
version 1

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {

    if (first < last) {    //at least two elems
        int pivotPoint;

        // partition and get the pivot point (the index)
        pivotPoint = partition(values, first, last);

        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
    quickSort(values, 0, size-1);
}
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Quicksort: code 
version 1

template<class ItemType>
int partition(ItemType values[], int first, int last) {

    int mid = (first + last) / 2;  //use middle value as pivot
    
    ItemType pivotValue = values[mid];
    swap(values[last], values[mid]);  //move pivot to end
    
    int i=first,j=last-1;
    while (i<j) {
        while (values[i] < pivotValue) {i++;} 
        while (values[j] > pivotValue) {j--;} 
        if (i < j) {
            swap(values[i++], values[j--]);
        }
    }
    swap(values[i], values[last]);   //replace pivot
    return i;
}
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Quicksort: runtime analysis
! Choice of pivot point dramatically affects running 

time. 
! Best Case 
- Pivot partitions the set into 2 equally sized subsets at 

each stage of recursion: O(log N) levels  
(== how many times can I divide N by 2 (until it’s <=1)) 
- Partitioning at each level is O(N)  

❖ each element is compared to the pivot and maybe moved one 
time 

- O(N log N)
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Quicksort: runtime analysis

! Worst Case 
- Pivot is always the smallest element, partitioning the 

set into one empty subset, and one of size N-1. 
- Partitioning at each level is N 

❖ T(N) = T(N-1) + N  (time to sort N-1 plus N for partitioning) 
❖ T(N) = N + N-1 + . . . + 2 + 1     (from unwinding the above) 
❖ T(N) = N(N+1)/2  

- O(N2) 

Moral of the story: it pays to pick a good pivot point
54

Quicksort: runtime analysis

! Average Case 
- Assume left side is equally likely to have a size of 0 

or 1 or 2 or ... or N elements (a random distribution) 
- O(N log N) 

❖ Not a trivial proof . . . most of it is in the Weiss book.
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Quicksort: Picking the pivot 
! Goal: ensure the worst case doesn’t happen. 
! Picking a pivot randomly is safe 
- but random number generation can be expensive 

! Using the first element: 
- if the input is randomly ordered, this is ok. 
- if the input is sorted, all elements are in right half, 

this is the worst case = O(N2) 
! Use the median value (the middle value in order): 
- perfectly divides into two even sides 
- but you have to sort the list to find the median. 56

Quicksort: Picking the pivot 
Median of Three method 

! For the pivot value:  
- Take the three values at the first, last, and middle 

positions in the list. 
- Throw out the max and min values. 
- Use the remaining value as the pivot value. 

! This is an “estimate” of the real median 
- taking median of more than 3 is not worth the time
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Quicksort: Picking the pivot 
Median of Three method 

! Median-of-Three partitioning: 
- arrange the values (by swapping) at the first, last 

and middle positions so that: 

- (this puts the median of the 3 in the middle). 
- swap pivot (A[middle]) with A[last-1]. 
- start with i = first+1 and j=last-2 

(A[first] and A[last] are already in place). 
- use same algorithm as original partitioning.

A[first]  <=   A[middle] <=   A[last]
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Quicksort: Picking the pivot 
Median of Three method 

pivot

5 6 4

6

3 12 192 13 6

5 6 4 3 12 192 6 13

A[left] = 2, A[center] = 13, A[right] = 6

Swap A[center] and A[right], so 
the three values are in order

5 6 4 3 12 192 13

pivot

65 6 4 3 12192 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

Now we only need to partition A[left + 1, …, right – 2].
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Quicksort: Small Arrays 
! For very small arrays, quicksort does not 

perform as well as insertion sort 
➡ how small depends on many factors, such as the 

time spent making a recursive call, the compiler, etc 

! Do not use quicksort recursively for small arrays 
➡ Instead, use a sorting algorithm that is efficient for 

small arrays, such as insertion sort 
➡ a cutoff between 5 and 20 is good. 
➡ Note: median of three partitioning requires at least 3 

elements anyway 60

Quicksort: code 
version 2

const in CUTOFF = 10;

template<class ItemType>
void quickSort (ItemType values[], int first, int last) {
    int pivotPoint;
    if (first + CUTOFF <= last) {  // more than CUTOFF elems
        pivotPoint = partition(values, first, last);
        quickSort(values, first, pivotPoint - 1);
        quickSort(values, pivotPoint + 1, last);
    } else {
        insertionSort(values, first,last);  //base case
    }
}

template<class ItemType>
void quickSort (ItemType values[], int size) {
    quickSort(values, 0, size-1);
}

Note: rewrite insertion sort for this signature: 
insertionSort(ItemType values[],
               int first, int last);
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Quicksort: code 
version 2

template<class ItemType>
int partition(ItemType values[], int first, int last) {
    //sort first, mid, last
    int mid = (first + last) / 2;       
    if (values[mid] < values[first])  swap(values[mid], values[first]);
    if (values[last] < values[first]) swap(values[last], values[first]);
    if (values[last] < values[mid])   swap(values[last], values[mid]);
    
    ItemType pivotValue = values[mid];  // move pivot to last-1
    swap(values[last-1], values[mid]);
    
    int i=first+1,j=last-2;             // do the partitioning
    while (i<j) {
        while (values[i] < pivotValue) {i++;}
        while (pivotValue < values[j]) {j--;}
        if (i < j)
            swap(values[i++], values[j--]);
    }
    swap(values[i], values[last-1]);    // put pivot back in place
    return i;
}

Median of three partitioning
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Quicksort vs MergeSort 
! Both run in O(N log N) 
! Compared with Quicksort, Merge sort has fewer 

comparisons but more swapping (copying) 
➡ (not yet able to verify the following): 
➡ In Java,  an element comparison is expensive but 

moving elements is cheap.  Therefore,  Merge sort is 
used in the standard Java library for generic sorting 

➡ In C++, copying objects can be expensive while 
comparing objects often is relatively cheap.  
Therefore, quicksort is the sorting routine commonly 
used in C++ libraries


