
1

Hash Tables
Chapter 20

CS 3358
Spring 2015

Jill Seaman

Sections 20.1, 20.2, 20.3, 20.4 (not 20.4.2), 20.5
2

What are hash tables?

! A Hash Table is used to implement a set,
providing basic operations in constant time:
- insert
- remove (optional)
- find (membership test)
- makeEmpty (need not be constant time)

! It uses a function that maps an object in the
set (a key) to its location in the table.

! The function is called a hash function.

41

Using a hash function

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

Empty

4501

Empty

8903

 8

10

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

HandyParts company
makes no more than 100
different parts. But the
parts all have four digit numbers.

This hash function can be used to
store and retrieve parts in an array.

Hash(partNum) = partNum % 100

42

Placing elements in the array

Use the hash function

Hash(partNum) = partNum % 100

to place the element with
part number 5502 in the
array.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

Empty

4501

Empty

8903

 8

10

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

43

Placing elements in the array

Next place part number
6702 in the array.

Hash(partNum) = partNum % 100

 6702 % 100 = 2

But values[2] is already
occupied.

 COLLISION OCCURS

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

44

How to resolve the collision?

One way is by linear probing.
This uses the following function

 (HashValue + 1) % 100

repeatedly until an empty location
is found for part number 6702.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

45

Resolving the collision

Still looking for a place for 6702
using the function

 (HashValue + 1) % 100

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

46

Collision resolved

Part 6702 can be placed at
the location with index 4.

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

47

Collision resolved

Part 6702 is placed at
the location with index 4.

Where would the part with
number 4598 be placed using
linear probing?

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

6702

.

.

.

Empty

2298

3699

Empty

4501

5502

10

Hashing concepts

! Hash Table: (usually an array) where objects
are stored by according to their key
- key: attribute of an object used for searching/

sorting
- number of valid keys usually greater than number

of slots in the table
- number of keys in use usually much smaller than

table size.
! Hash function: maps a key to a Table index
! Collision: when two separate keys hash to the

same location

11

Hashing concepts

! Collision resolution: method for finding an
open spot in the table for a key that has
collided with another key already in the table.

! Load Factor: the fraction of the hash table
that is full
- may be given as a percentage: 50%
- may be given as a fraction in the range from 0 to

1, as in: .5

12

Hash Function

! Goals:
- computation should be fast
- should minimize collisions (good distribution)

! Some issues:
- should depend on ALL of the key  

(not just the last 2 digits or first 3 characters,
which may not themselves be well distributed)

13

Hash Function
! Final step of hash function is usually: 

- temp is some intermediate result
- size is the hash table size
- ensures the value is a valid location in the table (0..size-1)

! Picking a value for size:
- Bad choices:

❖ a power of 2: then the result is only the lowest order bits of temp
(not based on whole key)

❖ a power of 10: result is only lowest order digits of decimal number
- Good choices: prime numbers

temp % size

14

Hash Function: string keys

! If the key is not a number, hash function must
transform it to a number, to % by the size

! Method 1: Add up ascii values

- different permutations of same chars have same hash value
(“cat” and “act” have same value)

- large tableSize and short key length do not distribute well:

int hash (string key, int tableSize) {
 int hashVal = 0;
 for (int i=0; i<key.length(); i++)
 hashVal = hashVal + key[i]; //implicit conversion
 return hashVal % tableSize;
}

If table size is 10,007 and keys are 8 characters long:
Since ascii values are between 0 and 127, There are 1288 = 7.2 x 1016 different keys.
Hash produces values between 0 and 127*8 = 1016 all falling in first 1/10th of the table

15

Hash Function: string keys

! Method 2: Multiply each char by a power of 128

- now “cat” and “act” map to different values (most likely)
- but now we get really big numbers (overflow)
- we can take mod of intermediate results to reduce overflow:

- but mod is expensive . . .

int hash (string key, int tableSize) {
 int hashVal = 0;
 for (int i=0; i<key.length(); i++)
 hashVal = (hashVal * 128 + key[i]) % tableSize;
 return hashVal;
}

hash = (k[0]*1283 + k[1]*1282 + k[2]*1281 + k[3]*1280) %tableSize

hash = (((k[0]*128 + k[1])*128 + k[2])*128 + k[3]) %tableSizeThis is equivalent to:

16

Hash Function: string keys
- could just allow overflow, take mod at the end
- but repeated multiplying by 128 tends to shift early chars out

to the left (potentially leading to more collisions)
! Method 3: Multiply each char by a power of 37

- compromise. 37 is prime. Has good distribution.
- “au” and “bP” map to the same value, but collisions are less

common than in method 1.

int hash (string key, int tableSize) {
 int hashVal = 0;
 for (int i=0; i<key.length(); i++)
 hashVal = hashVal * 37 + key[i];
 return hashVal % tableSize;
}

hash = (((k[0]*37 + k[1])*37 + k[2])*37 + k[3])*37

17

Collision Resolution:
1. Linear Probing

! Insert: When there is a collision, search
sequentially for the next available slot

! Find: if the key is not at the hashed location,
keep searching sequentially for it.
- if it reaches an empty slot, the key is not found

! Problem: if the the table is somewhat full, it
may take a long time to find the open slot.
- May not be O(1) any more

! Problem: Removing an element in the middle
of a chain breaks the algorithm.

18

Linear Probing:
Example

! Insert: 89, 18, 49, 58, 69, hash(k) = k mod 10

49 is in 0 because
9 was full

58 is in 1 because
8, 9, 0 were full

69 is in 1 because
9, 0 were full

Probing function (attempt i): hi(K) = (hash(K) + i) % tablesize

46

Linear Probing: delete problem

Part 6702 was placed at
the location with index 4,
after colliding with 5502

[0]

[1]

[2]

[3]

[4]

 .
 .
 .

 values

[97]

[98]

[99]

7803

6702

.

.

.

Empty

2298

3699

Empty

4501

5502

Now remove 7803.

Now find 6702 (hash(6702)=2):
 not at values[2]
 values[3] is empty, so not found

20

Linear Probing: Lazy deletion

! Don’t remove the deleted object, just mark as
deleted

! During find, marked deletions don’t stop the
searching

! During insert, the spot may be reused
! If there are a lot of deletions, searching may

still take a long time even if the table is mostly
empty.

21

Linear Probing:
Primary Clustering

! Cluster: a large, sequential block of occupied
slots in the table

! Any key that hashes into the cluster requires
excessive attempts to resolve the collision

! If it’s during an insert operation, the cluster
gets bigger.

! If two clusters are separated by one slot, a
single insertion will drastically degrade the
future performance

! Primary clustering is a problem at high load
factors (90%), not at 50% or less. 22

Collision Resolution:
2. Quadratic Probing

! An attempt to eliminate primary clustering
! If the hash function returns H, and H is occupied,

try H+1, then H+4, then H+9, ...
- for each attempt i, try H+i2 next.

! Is it guaranteed to find an empty slot if there is
one (like linear probing)?
- Yes IF: the table size is prime and the load is <= 50%

Probing function (attempt i): hi(K) = (hash(K) + i2) % tablesize

23

Quadratic Probing:
Example

! Insert: 89, 18, 49, 58, 69, hash(k) = k mod 10
Probing function (attempt i): hi(K) = (hash(K) + i2) % tablesize

49 is in 0 because
9 was full

58 is in 2 because
8, 8+1=9 were full,
(8+4)%10=2 wasn’t

69 is in 3 because
9, (9+1)%10=0
were full,
(9+4)%10=3 wasn’t

Note: smaller clusters
24

Quadratic probing:
 expansion of table

! Since the table should be less than 50% full:
! Can the table be expanded if the load factor gets

more than 50%?
! Yes.
- Find the next prime number greater than

2*tableSize, resize to that.
- Don’t just copy all the elements 

(new tablesize => new hash function)
- Scan old table for non-empties, and use insert

function to add them to new table using new size.
! This is called rehashing.

25

Collision Resolution:
3. Separate chaining

! Use an array of linked lists for the hash table
! Each linked list contains all objects that hashed to that

location
- no collisions

Hash function is still:
h(K) = k % 10

26

Separate Chaining
! To insert a an object:
- compute hash(k)
- insert at front of list at that location (if empty, make first node)

! To find an object:
- compute hash(k)
- search the linked list there for the key of the object

! To delete an object:
- compute hash(k)
- search the linked list there for the key of the object
- if found, remove it

27

Separate Chaining
! The load can be 1 or more
- more than 1 node at each location, still O(1) inserts and finds
- smaller loads do not improve performance
- moderately larger loads do not hurt performance

! Disadvantages
- Memory allocation could be expensive
- too many nodes at one position can slow operations

! Advantages:
- deletion is easy
- don’t have to resize/rehash

