What are hash tables?

- A Hash Table is used to implement a set, providing basic operations in constant time:
 - insert
 - remove (optional)
 - find (membership test)
 - makeEmpty (need not be constant time)
- It uses a function that maps an object in the set (a key) to its location in the table.
- The function is called a hash function.

Using a hash function

HandyParts company makes no more than 100 different parts. But the parts all have four digit numbers.

This hash function can be used to store and retrieve parts in an array.

\[\text{Hash} \text{(partNum)} = \text{partNum} \% 100 \]
Placing elements in the array

Next place part number 6702 in the array.

Hash(partNum) = partNum % 100

6702 % 100 = 2

But values[2] is already occupied.

COLLISION OCCURS

How to resolve the collision?

One way is by linear probing. This uses the following function

(HashValue + 1) % 100

repeatedly until an empty location is found for part number 6702.

Resolving the collision

Still looking for a place for 6702 using the function

(HashValue + 1) % 100

Collision resolved

Part 6702 can be placed at the location with index 4.
Collision resolved

Part 6702 is placed at the location with index 4.

Where would the part with number 4598 be placed using linear probing?

Hashing concepts

- **Hash Table**: (usually an array) where objects are stored by according to their key
 - key: attribute of an object used for searching/sorting
 - number of valid keys usually greater than number of slots in the table
 - number of keys in use usually much smaller than table size.

- **Hash function**: maps a key to a Table index

- **Collision**: when two separate keys hash to the same location

Hashing concepts

- **Collision resolution**: method for finding an open spot in the table for a key that has collided with another key already in the table.

- **Load Factor**: the fraction of the hash table that is full
 - may be given as a percentage: 50%
 - may be given as a fraction in the range from 0 to 1, as in: .5

Hash Function

- **Goals**:
 - computation should be fast
 - should minimize collisions (good distribution)

- **Some issues**:
 - should depend on ALL of the key (not just the last 2 digits or first 3 characters, which may not themselves be well distributed)
Hash Function

- Final step of hash function is usually:
 - temp % size
 - temp is some intermediate result
 - size is the hash table size
 - ensures the value is a valid location in the table (0..size-1)
- Picking a value for size:
 - Bad choices:
 - a power of 2: then the result is only the lowest order bits of temp (not based on whole key)
 - a power of 10: result is only lowest order digits of decimal number
 - Good choices: prime numbers

Hash Function: string keys

- Method 1: Add up ascii values
 - different permutations of same chars have same hash value ("cat" and "act" have same value)
 - large table size and short key length do not distribute well:
 - int hash (string key, int tableSize) {
 int hashVal = 0;
 for (int i=0; i<key.length(); i++)
 hashVal = hashVal + key[i]; // implicit conversion
 return hashVal % tableSize;
 }

 - if table size is 10,007 and keys are 8 characters long:
 - there are 128^8 = 7.2 x 10^16 different keys.
 - hash produces values between 0 and 127*8 = 1016 all falling in first 1/10th of the table

- Method 2: Multiply each char by a power of 128
 - now "cat" and "act" map to different values (most likely)
 - but now we get really big numbers (overflow)
 - we can take mod of intermediate results to reduce overflow:
 - int hash (string key, int tableSize) {
 int hashVal = 0;
 for (int i=0; i<key.length(); i++)
 hashVal = (hashVal * 128 + key[i]) % tableSize;
 return hashVal;
 }

 - but mod is expensive . . .

- Method 3: Multiply each char by a power of 37
 - compromise. 37 is prime. Has good distribution.
 - "au" and "bp" map to the same value, but collisions are less common than in method 1.

Hash Function: string keys

- If the key is not a number, hash function must transform it to a number, to % by the size
Collision Resolution:
1. Linear Probing

- Insert: When there is a collision, search sequentially for the next available slot
- Find: if the key is not at the hashed location, keep searching sequentially for it.
 - if it reaches an empty slot, the key is not found
- Problem: if the the table is somewhat full, it may take a long time to find the open slot.
 - May not be O(1) any more
- Problem: Removing an element in the middle of a chain breaks the algorithm.

Linear Probing: delete problem

Part 6702 was placed at the location with index 4, after colliding with 5502
Now remove 7803.
Now find 6702 (hash(6702)=2): not at values[2]
values[3] is empty, so not found

Linear Probing: Lazy deletion

- Don’t remove the deleted object, just mark as deleted
- During find, marked deletions don’t stop the searching
- During insert, the spot may be reused
- If there are a lot of deletions, searching may still take a long time even if the table is mostly empty.

Linear Probing: Primary Clustering

- Cluster: a large, sequential block of occupied slots in the table
- Any key that hashes into the cluster requires excessive attempts to resolve the collision
- If it’s during an insert operation, the cluster gets bigger.
- If two clusters are separated by one slot, a single insertion will drastically degrade the future performance
- Primary clustering is a problem at high load factors (90%), not at 50% or less.

Collision Resolution: 2. Quadratic Probing

- An attempt to eliminate primary clustering
- If the hash function returns H, and H is occupied, try H+1, then H+4, then H+9, ...
 - for each attempt i, try H+i^2 next.

Probing function (attempt i): \(h(K) = (\text{hash}(K) + i^2) \mod \text{table size} \)

- Is it guaranteed to find an empty slot if there is one (like linear probing)?
 - Yes IF: the table size is prime and the load is <= 50%

Quadratic Probing: Example

- Insert: 89, 18, 49, 58, 69, \(\text{hash}(k) = k \mod 10 \)

<table>
<thead>
<tr>
<th>Insertion Order</th>
<th>Hash Value</th>
<th>Probing Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

Probing function (attempt i): \(h(K) = (\text{hash}(K) + i^2) \mod \text{table size} \)

- 49 is in 0 because 9 was full
- 58 is in 2 because 8, 8+1=9 were full, (8+4)%10=2 wasn’t
- 69 is in 3 because 9, (9+1)%10=0 were full, (9+4)%10=3 wasn’t

Note: smaller clusters

Quadratic probing: expansion of table

- Since the table should be less than 50% full:
- Can the table be expanded if the load factor gets more than 50%?
 - Yes.
 - Find the next prime number greater than 2*tableSize, resize to that.
 - Don’t just copy all the elements
 (new tablesize => new hash function)
 - Scan old table for non-empty, and use insert
 function to add them to new table using new size.
 - This is called rehashing.
Collision Resolution:
3. Separate chaining

- Use an array of linked lists for the hash table
- Each linked list contains all objects that hashed to that location
 - no collisions

Hash function is still: $h(k) = k \mod 10$

Separate Chaining

To insert an object:
- compute hash(k)
- insert at front of list at that location (if empty, make first node)

To find an object:
- compute hash(k)
- search the linked list there for the key of the object

To delete an object:
- compute hash(k)
- search the linked list there for the key of the object
- if found, remove it

Separate Chaining

- The load can be 1 or more
 - more than 1 node at each location, still O(1) inserts and finds
 - smaller loads do not improve performance
 - moderately larger loads do not hurt performance

- Disadvantages
 - Memory allocation could be expensive
 - too many nodes at one position can slow operations

- Advantages:
 - deletion is easy
 - don’t have to resize/rehash