
1

Review: Arrays, pointers, structures�
(Chapter 1)

CS 3358
Spring 2015

Jill Seaman

Data Types

! Data Type:
− set of values
− set of operations over those values

! example: Integer
− whole numbers, -32768 to 32767
− +, -, *, /, %, ==, !=, <, >, <=, >=, ...

! Which operation is not valid for float?

3

Data Types (C/C++)

! Scalar (or Basic) Data Types (atomic values)
− Arithmetic types

! Integers
− short, int, long
− char, bool

! Floating points
− float, double, long double

! Composite (or Aggregate) Types:
− Arrays: ordered sequence of values of the same type
− Structures: named components of various types

4

Review: Arrays

! An array contains multiple values of the same type.
! values are stored consecutively in memory.
! An array definition in C++:
! Array indices (subscripts) are zero-based

! the subscript can be ANY integer expression:

! What operations can be performed over (entire)
arrays?

int numbers[5];

numbers[2] numbers[i] numbers[(i+2)/2]

numbers[0] ... numbers[4]

5

First-Class vs Second-Class objects

! first-class objects can be manipulated in the usual
ways without special cases and exceptions
- copy (=, assignment)
- comparison (==, <, ...)
- input/output (<<, >>)

! second-class objects can be manipulated only in
restricted ways, may have to define operations
yourself
- Usually primitive (built-in) data types

6

First-Class vs Second-Class objects:
Strings

! second-class object: C-String (char array)
- strcpy
- strlen
- strcat
- strcmp

! first-class object: string class (standard library)
- =
- size() member function
- ==, <, ...
- +

The “usual” operators

Special functions

7

First-Class vs Second-Class objects:
arrays

! second-class object: primitive array
- = does not copy elements
- length undefined
- ==, <, ... do not perform as expected  

! first-class object: vector class (standard template library)
- =
- size() member function
- ==, <, ...

The “usual” operators

usual operations are not defined

8

vector and string

! Included in standard (template) library
! class definitions used for first class objects
! The definitions provide an interface that hides

the implementation from the programmer.
! Programmer does not need to understand the

implementation to use the types.
! Vector: like an array, can contain elements of

any single given type.

9

Using vector

! Include file

! To define a vector give a name, element type,
and optional size (default is 0):

! Can use [] to access the elements (0-based):

! Use the size member function to get the size:

vector<int> a(3); // 3 int elements

#include <vector>

a[2] = 12;

cout << a.size() << endl; //outputs 3 10

Using vector

! Use resize() to change the size of the vector:

! Use push_back to increase the size by one and
add a new element to the end,  
pop_back removes the last element

! Implementation of resizing is handled internally
(presumably it is done efficiently).

vector<int> a; // size is 0
a.resize(4); // now has 4 elements

vector<int> a; // size is 0
a.push_back(25); // now has 1 element
a.pop_back(); // now has 0 elements

11

Parameter passing
(for large objects)

! Call by value is the default

! Call by reference can be used

! Call by constant reference:

int findMax(vector<int> a);

int findMax(vector<int> & a);

int findMax(const vector<int> & a);

Problem: lots of copying if a is large

Problem: may still want to prevent changes to a

the “const” won’t allow a to be changed
12

Multidimensional arrays
! multidimensional array: an array that is accessed

by more than one index

! There are no first-class versions of this in the
STL

! The book defines a first-class version called
matrix in ch 3 to represent a 2-dimensional array.

! The primitive version can have more than 2
dimensions.

int table[2][5]; // 2 rows, 5 columns
table[0][0] = 10; // puts 10 in upper left

13

Pointers

! Pointer: a variable that stores the address of another
variable, providing indirect access to it.

! The address operator (&) returns the address of a
variable.

! An asterisk is used to define a pointer variable 

! “ptr is a pointer to an int”. It can contain addresses of
int variables.

int x;
cout << &x << endl; // 0xbffffb0c

int *ptr;

ptr = &x; 14

Pointers

! The unary operator * is the dereferencing operator.
! *ptr is an alias for the variable that ptr points to.

! Initialization:

! ptr is a pointer to an int, and it is initialized to the
address of x.

int x = 10;
int *ptr; //declaration, NOT dereferencing
ptr = &x; //ptr gets the address of x
*ptr = 7; //the thing ptr pts to gets 7

int x = 10;
int *ptr = &x; //declaration, NOT dereferencing

15

Pointers: watchout

! What is wrong with each of the following?

int *ptr = &x;
int x = 10;

int x = 10;
int *ptr = x;

int x = 10;
int y = 99;
int *ptr = &y;
*ptr = x;
ptr = &x;

16

Pointers: watchout

! What is wrong with each of the following?

int *ptr = &x;
int x = 10;

int x = 10;
int *ptr = x;

int x = 10;
int y = 99;
int *ptr = &y;
*ptr = x;
ptr = &x;

x is not declared yet

x is not an address

y gets 10 (changes y)
ptr points to x (changes ptr)

17

Pointers: More examples

! What is happening in each of the following?

int *ptr = NULL;

int x = 10;
int *ptr = &x;
*ptr += 5;
*ptr++;

int x = 10, y = 99;
int *ptr1 = &x, *ptr2 = &y;

ptr1 = ptr2;
*ptr1 = *ptr2;

if (ptr1==ptr2) ...
if (*ptr1==*ptr2) ...

18

Pointers: More examples

! What is happening in each of the following?

int *ptr = NULL;

int x = 10;
int *ptr = &x;
*ptr += 5;
*ptr++;

int x = 10, y = 99;
int *ptr1 = &x, *ptr2 = &y;

ptr1 = ptr2;
*ptr1 = *ptr2;

if (ptr1==ptr2) ...
if (*ptr1==*ptr2) ...

sets ptr to 0 (null ptr)

changes x to 15
changes ptr to point to location after x (returns its value)

makes ptr1 pt to what ptr2 pts to
copies what ptr2 points to into the
location ptr1 points to

do the ptrs point to the same location?

do the ptrs point to the same values?

19

Dynamic Memory Allocation

! Automatic variables: variables that are created when
declared, and destroyed at the end of their scope.

! Dynamic memory allocation allows you to create and
destroy anonymous variables on demand, during run-
time.

! “new” operator requests dynamically allocated
memory and returns address of newly created
anonymous variable.

string *ptr;
ptr = new string(“hello”);
cout << *ptr << endl;
cout << “Length: “ << (*ptr).size() << endl; 20

Dynamic Memory Allocation:
delete

! When you are finished using a variable created with
new, use the delete operator to destroy it.

! Do not “delete” pointers whose values were NOT
dynamically allocated using new.

! Do not forget to delete dynamically allocated variables
(memory leaks: allocated but inaccessible memory).

int *ptr;
ptr = new int;
*ptr = 100;
...
delete ptr;

21

Reference Variables

! Reference Type: an alias to another variable.
! It’s like a constant pointer variable that is always

implicitly dereferenced.

! Reference variables MUST be initialized when they
are declared.

− No way to change their address value later
(assignment dereferences them)

! C++ call-by-reference parameters are really reference
variables used as parameters.

int x = 25;
int &y = x; // int & is the reference type
y +=3; // this changes x to 3

22

Structures

! A structure stores a collection of objects of
various types

! Each object in the structure is a member, and is
accessed using the dot member operator.

Student student1, student2;
student1.name = “John Smith”;

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

Defines a new data type

Defines new variables

23

Structures: operations

! Valid operations over entire structs:
− assignment: student1 = student2;
− function call: myFunc(gradStudent,x);

! Invalid operations over structs:
− comparison: student1 == student2
− output: cout << student1;
− input: cin >> student2;
− Must do these member by member

24

Pointers to structures

! We can define pointers to structures

! To access the members via the pointer:

! dot operator has higher precedence, so use ():

! or equivalently, use ->:

Student s1 = {12345,“Jane Doe”, 18, “Math”};
Student *ptr = &s1;

cout << *ptr.name << end; // ERROR: *(ptr.name)

cout << (*ptr).name << end;

cout << ptr->name << end;

25

Indigenous vs exogenous data

! Consider two structure definitions:

! indigenous data: completely contained within the
structure

! exogenous data: reside outside the structure,
and are pointed to from the structure.

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

struct Teacher {
 int idNumber;
 string *name;
};

all Students members

Teacher’s name
26

Shallow copy vs deep copy

! Consider structure assignment:

! By default, it is member by member copy.
! This is fine for Student, but not the Teachers
! t1.name and t2.name share the same memory,

point to the same place.
! changing t1->name will also change t2->name
! delete t1.name; will make t2.name invalid.

Student s1, s2;
...
s1 = s2;

Teacher t1, t2;
...
t1 = t2;

27

Shallow copy vs deep copy

! Shallow copy: copies top level data only. For
pointers, the address is copied, not the values
pointed to. This is the default for =.

! Deep copy: copies the pointed at values instead
of their addresses. May require allocating new
memory for the new value.

28

Assert
! requires #include <cassert>
! void assert (int expression); //prototype
! If the expression is equal to zero (false), a

message is written to the screen and the
program is terminated.

cout << “Name” << name1 << endl;

int findMax (vector<int> a) {
 assert (a.size() > 0);
 int max = a[0];
 //code to find maximum goes here
 return max;
};

Assertion failed: expression, file filename, line line number

