
1

Multi-file Development
using C++, Linux and Make

CS 3358
Spring 2015

Jill Seaman

2

Assumptions: What you should
already know how to do with Linux
! How to use linux from the command line (basic

commands).
! Basic file editing on a linux machine.
! Compile and execute a single file:

! Remote access (secure shell, file transfer)
! CS department lab webpage has documentation

on these tasks (Lab tutorials, handouts).
➡ or see my CS2308 Linux lecture

[...]$g++ hello.cpp
[...]$./a.out

3

C++ Programs with Multiple Files
! How the code is usually split up

★ Put main in its own file, with helper functions
➡ acts like a driver

★ Put each class declaration in a separate *.h file
★ Put the implementation of each class (the definitions

of the member functions) in its own *.cpp file
★ Each file must #include (directly or indirectly) the

header file of each class that it uses. 

4

time.h (header file)

// file time.h
#include <string>
using namespace std;

 class Time //new data type
 {
 // models a 12 hour clock
 private:
 int hour;
 int minute;
 void addHour();

 public:
 void setHour(int);
 void setMinute(int);

 string display();
 void addMinute();

 };

cout << “Name” << name1 << endl;

5

time.cpp (implementation file)

cout << “Name” << name1 << endl;

// file time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

#include "time.h"

void Time::setHour(int hr) {
 hour = hr; // hour is a member var
}
void Time::setMinute(int min) {
 minute = min; // minute is a member var
}

void Time::addHour() { // a private member func
 if (hour == 12)
 hour = 1;
 else
 hour++;
} //continued . . . 6

time.cpp (implementation file, cont.)

cout << “Name” << name1 << endl;

void Time::addMinute()
{
 if (minute == 59) {
 minute = 0;
 addHour(); // call to private member func
 } else
 minute++;
}

string Time::display()
// returns time in string formatted to hh:mm
{
 ostringstream sout;
 sout.fill('0');
 sout << hour << ":" << setw(2) << minute;
 return sout.str();
}

7

driver.cpp: A program that uses Time

cout << “Name” << name1 << endl;

//using Time class (driver.cpp)
#include<iostream>
#include "time.h"
using namespace std;

int main() {
 Time t;
 t.setHour(12);
 t.setMinute(58);
 cout << t.display() <<endl;
 t.addMinute();
 cout << t.display() << endl;
 t.addMinute();
 cout << t.display() << endl;
 return 0;
}

8

How to compile and run
a multiple file program

! From the command line (either order): 
 

✴ The header file does not need to be listed.  
 It only needs to be #included.

✴ one file must have the main function

• a.out is (by default) the executable for the entire
program.

[...]$g++ time.cpp driver.cpp  

[...]$./a.out
12:58
12:59
1:00

9

Separate Compilation
! Compiling to intermediate files: 
 

✴ -c option produces object files, with a .o extension
(time.o, driver.o)

• To link the object files into the executable (a.out): 
 

• Now if we change only time.cpp, to recompile:

[...]$g++ -c time.cpp  
[...]$g++ -c driver.cpp  

[...]$ g++ time.o driver.o

[...]$g++ -c time.cpp  
[...]$g++ time.o driver.o   It re-uses the driver.o

produced in the first step 10

Make

! Make is a utility that manages (separate)
compilation of large groups of source files.

! Goal: After the first time a project is compiled, it
only re-compiles the newly changed files (and
the files depending on the changed files).

! The dependencies are defined by rules
contained in a makefile.

! The rules are defined and managed by humans
(programmers).

11

Make

! Rule format: 
 

! target is a filename (or an action/goal name)
! An example rule: 

! make command with no arguments executes
first rule in makefile.

! make command followed by a target executes
the rule for that target.

target: [prerequisite files]
<tab> [command to execute to produce target]

time.o: time.cpp time.h
g++ -c time.cpp

12

Makefile

! makefile: 
 
 
 
 
 
 
 

! Note: “timeTest” is the name of the executable
file in this example (not a.out).

cout << “Name” << name1 << endl;

#makefile

timeTest: driver.o time.o
g++ driver.o time.o -o timeTest

driver.o: driver.cpp time.h
g++ -c driver.cpp

time.o: time.cpp time.h
g++ -c time.cpp

13

Compile class + driver using make

• Make: 
 

• Execute:

• Modify driver.cpp and make again:

[...]$ make
g++ -c driver.cpp
g++ -c time.cpp
g++ driver.o time.o -o timeTest

[...]$./timeTest
12:58
12:59
1:00

[...]$ make
g++ -c driver.cpp
g++ driver.o time.o -o timeTest

Note that time.cpp is NOT
compiled this time.

