
1

Linked Lists
Ch 17 (Gaddis*)

CS 3358
Spring 2015

Jill Seaman

*Tony Gaddis, Starting out with C++: From Control Structures through Objects,
 Addison-Wesley, 8th Edition, 2014. ISBN: 0133769399

2

Introduction to Linked Lists
! A data structure representing a list
! A series of dynamically allocated nodes

chained together in sequence
- Each node points to one other node.

! A separate pointer (the head) points to the first
item in the list.

! The last element points to nothing (NULL)
NULL

head

3

Node Organization
! Each node contains:
- data field – may be organized as a structure, an

object, etc.
- a pointer – that can point to another node

data

pointer

4

Empty List
! An empty list contains 0 nodes.
! The list head points to NULL (address 0)
! (There are no nodes, it’s empty)

NULL

head

5

Declaring the Node data type

! Use a struct for the node type

! (this is just a data type, no variables declared)
! next can hold the address of a ListNode.

- it can also be NULL
- “self-referential data structure”

cout << “Name” << name1 << endl;

struct ListNode {
 double value;
 ListNode *next;
};

static int getObjectCount();

6

Defining the Linked List variable

! Define a pointer for the head of the list:

! It must be initialized to NULL to signify the end
of the list.

! Now we have an empty linked list:

cout << “Name” << name1 << endl;

ListNode *head = NULL;

static int getObjectCount();

NULL

head

7

Using NULL

! Equivalent to address 0
! Used to specify end of the list
! Use ONE of the following for NULL:

! to test a pointer for NULL (these are equivalent):

! in C++11 you may use

cout << “Name” << name1 << endl;

#include <iostream>
#include <cstddef>

static int getObjectCount();

while (p) ... <==> while (p != NULL) ...

if (!p) ... <==> if (p == NULL) ...

nullptr
8

Linked List operations

! Basic operations:
- create a new, empty list
- append a node to the end of the list
- insert a node within the list
- delete a node
- display the linked list
- delete/destroy the list
- copy constructor (and operator=)

cout << “Name” << name1 << endl;

static int getObjectCount();

9

Linked List class declaration

!

cout << “Name” << name1 << endl;

! See NumberList.h for the NumberList class decl.
- contains definition of ListNode and head pointer
- contains prototypes for all operations on previous

slide.

! For each function/operation (to implement it):
- draw pictures of applying operation to sample lists,

look for special cases, etc.
- write an algorithm in English based on pictures
- translate the algorithm to code 10

Operation:
Create the empty list

! Constructor: sets up empty list
! Add code to NumberList() in NumberList.cpp

cout << “Name” << name1 << endl;

11

Operation:
append node to end of list

! appendNode: adds new node to end of list
! Algorithm: 
 

cout << “Name” << name1 << endl;

Create a new node and store the data in it
If the list has no nodes (it’s empty)
 Make head point to the new node.
Else
 Find the last node in the list
 Make the last node point to the new node

When defining list operations, always consider special cases:
• Empty list
• First element, front of the list (when head pointer is involved) 12

appendNode: find last elem

! How to find the last node in the list?
! Algorithm:

! In C++: 
 

cout << “Name” << name1 << endl;

Make a pointer p point to the first element
while (the node p points to) is not pointing to NULL
 make p point to (the node p points to) is pointing to

ListNode *p = head;
while ((*p).next != NULL)
 p = (*p).next;

ListNode *p = head;

ListNode *p = head;
while (p->next)
 p = p->next;

<==>

p=p->next is like i++

13

appendNode implementation:

cout << “Name” << name1 << endl;

! Add code to appendNode() in NumberList.cpp,
based on last 2 slides

14

Traversing a Linked List

! Visit each node in a linked list, to
- display contents, sum data, test data, etc.

! Basic process:

cout << “Name” << name1 << endl;

set a pointer to point to what head points to
while pointer is not NULL
 process data of current node
 go to the next node by setting the pointer to
 the pointer field of the current node
end while

15

Operation: display the list

cout << “Name” << name1 << endl;

! Add code to displayList() in NumberList.cpp,
based on previous slide

! Then use ListDriver.cpp to test + demo the list.

16

Operation:
delete a node from the list

! deleteNode: removes node from list, and deletes
(deallocates) the removed node.

! Requires two pointers:
- one to point to the node to be deleted
- one to point to the node before the node to be

deleted. 
 

cout << “Name” << name1 << endl;

NULL

head

5 13 19

pn

Deleting 13 from the list

17

Deleting a node
! Change the pointer of the previous node to point

to the node after the one to be deleted.

! Now just “delete” the p node

NULL

head

5 13 19

pn

n->next = p->next;

18

Deleting a node
! After the node is deleted:

NULL

head

5 19

pn

delete p;

19

Delete Node Algorithm

! Delete the node containing num

cout << “Name” << name1 << endl;

use p to traverse the list, until it points to num or NULL
--as p is advancing, make n point to the node before it

if (p is not NULL) //found!
 if (p==head) //it’s the first node, and n is garbage
 make head point to the second element
 delete p’s node (the first node)
 else
 make n’s node point to what p’s node points to
 delete p’s node
else: . . . p is NULL, not found do nothing 20

Linked List functions: deleteNode

cout << “Name” << name1 << endl;

! Add code to deleteNode() in NumberList.cpp,
based on previous slide

! Then use ListDriver.cpp to test + demo the list.

21

Destroying a Linked List
! The destructor must “delete” (deallocate) all

nodes used in the list
! To do this, use list traversal to visit each node
! For each node,

- save the address of the next node in a pointer
- delete the node
- advance the ptr

cout << “Name” << name1 << endl;

22

Linked List functions: destructor

cout << “Name” << name1 << endl;

! Add code to ~NumberList() in NumberList.cpp,
based on previous slide

- copy paste from displayList()

! Then use ListDriver.cpp to test + demo the list.
- for testing, add cout before deleting p

23

Operation:
insert a node into a linked list

! Inserts a new node into the middle of a list.
! Uses two extra pointers:
- one to point to node before the insertion point
- one to point to the node after the insertion point 

[this one is optional]

NULL

head

5 13 19

newNode

17 NULL

pn

24

Inserting a Node into a Linked List
! Insertion completed:

NULL

head

5 13 19

newNode

17

pnn->next = newNode;
newNode->next = p;

25

Insert Node Algorithm
! Insert node in a certain position

cout << “Name” << name1 << endl;

Create the new node, store the data in it
Use pointer p to traverse the list,
 until it points to: node after insertion point or NULL
 --as p is advancing, make n point to the node before
 if p points to first node (p is head, n was not set)
 make head point to new node
 make new node point to p’s node
 else
 make n’s node point to new node
 make new node point to p’s node
 Note: we will assume our list is sorted, so the insertion point is immediately
before the first node that is larger than the number being inserted. 26

insertNode implementation

cout << “Name” << name1 << endl;

! Add code to insertNode() in NumberList.cpp,
based on previous slide.

! Then use ListDriver.cpp to test + demo the list.
- inserting into the middle of the list (general case

only)

27

Operation:
copy constructor

! Pointers + dynamic allocation => deep copy
! Don’t copy any pointers (allocate new memory)
! Iterate over src list, append nodes to new list.

cout << “Name” << name1 << endl;

Initialize head to NULL
For each item in the src list (in order)
 append item.value to this list

28

copy constructor: implementation

cout << “Name” << name1 << endl;

! Add code to copy constructor in NumberList.cpp,
based on previous slide

! Then use ListDriver.cpp to test + demo the list.

! Try operator= ?

! All the code for the NumberList demo will be on
the class website.

29

Chapter 17 in Weiss book
! Elegant implementation of linked lists
! It uses a “header node”
- empty node, immediately before the first node in

the list, not visible to users of the class
- eliminates need for most special cases
- internal traversals must skip that node

! It uses three separate classes (w/ friend access)
! It implements an iterator
! It uses templates
! We’ll look at it after we cover these new topics.

cout << “Name” << name1 << endl;

30

Linked List variations
! Circular linked list
- last cell’s next pointer points to the first element.

cout << “Name” << name1 << endl;

head

5 13 19

31

Linked List variations
! Doubly linked list
- each node has two pointers, one to the next node

(next) and one to the previous node (prev)
- head points to first element, tail points to last.
- can traverse list in reverse direction by starting at

the tail and using p=p->prev.

cout << “Name” << name1 << endl;

NULL

head

5 13 19

NULL

tail
32

Advantages of linked lists
(over arrays)

! A linked list can easily grow or shrink in size.
- The programmer doesn’t need to predict how many

values could be in the list.
- The programmer doesn’t need to resize (+copy) the

list when it reaches a certain capacity.
! When a value is inserted into or deleted from a

linked list, none of the other nodes have to be
moved.

cout << “Name” << name1 << endl;

33

Advantages of arrays
(over linked lists)

! Arrays allow random access to elements: array[i]
- linked lists allow only sequential access to elements

(must traverse list to get to i’th element).

! Arrays do not require extra storage for “links”
- linked lists are impractical for lists of characters or

booleans (pointer value is bigger than data value).

cout << “Name” << name1 << endl;

