
1

Introduction to ADTs and C++ STL
Abstract Data Types

Standard Template Library

CS 3358
Spring 2015

Jill Seaman

Roughly corresponds to chapter 7 of Weiss
2

Data Structure
! A particular way of storing and organizing data in

a computer so that it can be used efficiently

! A data type having
- a specific, physical representation of the data
- operations over its data

! A concrete description
! defined in terms of how it is implemented
- implementation-dependent

*from wikipedia

3

Abstract Data Type
! A set of data values and associated operations

that are precisely specified independent of any
particular implementation.

! A data type having
- a logical representation of the data
- operations over its data

! A logical description
! may be implemented in various ways
- implementation-independent

*from http://xlinux.nist.gov/dads/

4

Data Structures again
! The term “data structures” is often extended to

include both concrete AND logical descriptions
of complicated data types.

! A list of data structures could include ADTs
- arrays
- linked lists
- stacks
- queues
- vectors or lists in C++

Which are concrete?
Which are abstract?

5

Commonly used ADTs

! The purpose of many commonly used ADTs is to:
- store a collection of objects
- potentially organize the objects in a specific way
- provide potentially limited access to the objects

! These ADTs are often called
- containers
- collections
- container classes 6

Commonly used ADTs

! Examples:
- List (or sequence or vector)
- Set
- Multi-set (or bag)
- Stack and Queue
- Tree
- Map (or dictionary)

! Each of the above may have several variations

Stacks, Queues, and Trees will be
covered later in the semester

7

A List ADT
(with direct access)

! Values: ordered (1st, 2nd, etc) set of objects
! Operations often include:

- constructor: creates an empty list
- isEmpty: is the list empty
- size: returns the number of elements
- add(i,e): inserts an element e at position i
- remove(i): removes the element at position i
- get(i): returns the element at position i
- set(i,e) changes the element at position i to value e

8

A Set ADT
! Values: unordered collection of unique objects
! Operations often include:

- constructor: creates an empty set
- isEmpty: is the set empty
- size: returns the number of elements
- add(e): adds an element to the set (if not there)
- remove(e): removes an element from the set (if it is

there)
- contains(x): true if x is in the set
- addAll(s): adds all elements from set s to this one

(union)

9

A Bag (multi-set) ADT
! Values: unordered collection of objects  

 (may include duplicates)
! Operations may include:

- constructor: creates an empty bag
- isEmpty: is the bag empty
- size: returns the number of elements
- add(e): adds an element e to the bag
- remove(e): removes one copy of an element from the

bag (if it has any)
- removeAll(e): removes all copies of e from the bag
- occurrences(x): how many times x is in the bag

10

A Map ADT
! Values: a collection of unique keys and a collection

of values where each key is associated with a
single value. Keys have one type, values another.

! Operations may include:
- constructor: creates an empty map
- isEmpty: returns true if map has no key-value pairs
- size: returns the number of key-value pairs in the map
- get(k): returns value associated with key k (if any)
- put(k,v): associates value v with key k (adds a pair)
- keySet: returns a set of all the keys in the map

11

Implementing an ADT

! Interface (*.h):
- class declaration
- prototypes for the operations (interface)
- data members for the actual (concrete) representation

! Implementation (*.cpp)
- function definitions for the operations
- depends on representation of data members (their

concrete implementation)

12

Example ADT: bag version 1

class Bag
{
 public:
 Bag ();

 void add(int element);
 void remove(int element);

 int occurrences(int element) const;
 bool isEmpty() const;
 int size() const;

 static const int CAPACITY = 20;

 private:
 int data[CAPACITY];
 int count;
};

bag.h

concrete representation,
implementation dependent

true interface: prototypes are
independent of the implementation

what is the difference between count and CAPACITY?

13

Example ADT: bag version 1
#include "bag.h"
#include <cassert>
using namespace std;

Bag::Bag () {
 count = 0;
}
void Bag::add(int element) {
 assert (count < CAPACITY);
 data[count] = element;
 count++;
}
void Bag::remove(int element) {
 int index = -1; //change to position if found
 for (int i=0; i<count && index==-1; i++) {
 if (data[i]==element) {
 index = i;
 }
 }
 if (index!=-1) { //found, replace w/ last elem
 data[index] = data[count-1];
 count--;
 }
} //continued...

bag.cpp

what does this do?

14

Example ADT: bag version 1

int Bag::occurrences(int element) const {
 int occurrences=0;
 for (int i=0; i<count; i++) {
 if (data[i]==element) {
 occurrences++;
 }
 }
 return occurrences;
}

bool Bag::isEmpty() const {
 return (count==0);
}

int Bag::size() const {
 return count;
}

bag.cpp, cont.

15

 bag “driver”

#include<iostream>
#include "Bag.h"
using namespace std;

int main ()
{
 Bag b;

 b.add(4);
 b.add(8);
 b.add(4);

 cout << "size " << b.size() << endl;
 cout << "how many 4's: " << b.occurrences(4) << endl << endl;

 b.remove(4);
 cout << "removed a 4" << endl;
 cout << "size " << b.size() << endl;
 cout << "how many 4's: " << b.occurrences(4) << endl << endl;

bagTest.cpp

16

 bag “driver”

 Bag c(b);

 cout << "copied to c" << endl;
 cout << "size " << c.size() << endl;
 cout << "how many 4's: " << c.occurrences(4) << endl << endl;

 b.add(10);
 cout << "added 10 to b" << endl;
 cout << "b.size " << b.size() << endl;
 cout << "c.size " << c.size() << endl << endl;

 cout << "starting to add 20 items" << endl;
 for (int i=0; i<20; i++)
 b.add(33);
 cout << "added 20 more items to b" << endl;

 return 0;
};

bagTest.cpp

17

 bag “driver”: output

size 3
how many 4's: 2

removed a 4
size 2
how many 4's: 1

copied to c
size 2
how many 4's: 1

added 10 to b
b.size 3
c.size 2

starting to add 20 items
Assertion failed: (count < CAPACITY), function add, file
bag.cpp, line 12.
Abort trap: 6

output of running bagTest

18

Bag version 1 summary

! Implemented using a fixed size array
! When adding more elements than fit in the bag,

the program exits.
! Solution:

- use a dynamically allocated array
- when its capacity is reached, allocate a new, bigger

array.

19

 bag version 2

class Bag
{
 public:
 Bag ();

 Bag(const Bag &);
 ~Bag();
 void operator=(const Bag &);

 void add(int element);
 void remove(int element);

 int occurrences(int element) const;
 bool isEmpty() const;
 int size() const;

 static const int INCREMENT = 20;

 private:
 int *data; //pointer to bag array
 int capacity; //size of the array
 int count; //number of elements currently in array
};

bag.h

concrete representation

“The big three”

20

bag version 2
Bag::Bag () {
 count = 0;
 capacity = INCREMENT;
 data = new int[capacity];
}

//copy constructor
Bag::Bag(const Bag &rhs) {
 data = new int[rhs.capacity]; //allocate new array

 capacity = rhs.capacity; //copy values
 count = rhs.count;
 for (int i=0; i<count; i++) {
 data[i] = rhs.data[i];
 }
}

//destructor
Bag::~Bag() {
 delete [] data;
}

bag.cpp

21

bag version 2
void Bag::operator=(const Bag &rhs) {
 if (data) delete [] data; //delete old array
 data = new int[rhs.capacity]; //allocate new array

 capacity = rhs.capacity; //copy values
 count = rhs.count;
 for (int i=0; i<count; i++) {
 data[i] = rhs.data[i];
 }
}

void Bag::add(int element) {
 //if count is at the capacity, resize
 if (count==capacity) {
 capacity += INCREMENT;
 int *newData = new int[capacity]; //new array
 for (int i=0; i<count; i++) { //copy values
 newData[i] = data[i];
 }
 delete [] data; //delete old array
 data = newData; //make data point to new
 }

 data[count] = element; //add new element
 count++;
}

bag.cpp, cont.

no changes to remaining functions!
22

 bag “driver”: output version 2

size 3
how many 4's: 2

removed a 4
size 2
how many 4's: 1

copied to c
size 2
how many 4's: 1

added 10 to b
b.size 3
c.size 2

starting to add 20 items
added 20 more items into b

output of running bagTest

resizing succeeded!

23

C++ STL: Standard Template Library

! A library of ADTs implemented in C++

! Two categories of STL ADTs:
- containers: classes that store a collection of data and

impose some organization on it
- iterators: behave like pointers; a mechanism for

accessing elements in a container the iterator is
associated with.

24

STL Containers: sequence

! Two categories of STL Containers:
! sequence containers: organize and access data

sequentially, as in an array:
- vector: expandable array, values are quickly added

to or removed from the end of the list.
- deque: like a vector, but can add values quickly to

front and end of the list.
- list: can add values quickly anywhere in its

sequence, but does not provide random access.

Note the emphasis on performance. Not so abstract ADTs.

25

STL Containers: associative

! associative containers: use keys to allow data
elements to be quickly accessed. These include:
- set: stores a set of keys, no duplicates allowed.
- multiset: stores a set of keys, duplicates are

allowed.
- map: maps a set of keys to values, the keys must be

unique (but the values may appear multiple times).
- multimap: maps a set of keys to values, keys are not

unique (one key can have many values).

26

STL Iterators:

! iterators: Generalizations of pointers, used to
access data stored in containers.

! They point to a certain value (or the past-the-end
element).

! They may be dereferenced with *.
! Some types of iterators:

- forward: uses ++ to advance to next element.
- bidirectional: uses ++ and --.
- random access: uses ++ and -- and uses [i] to jump

to a specific element.

27

Some vector member functions

! size(): returns number of elements in the vector.
! push_back(x): inserts x at end of vector (increases size

by 1)
! pop_back(): removes the last element from the vector

(decreases size by 1)
! operator[i]: allows random access to specific element

(i must be less than the size of the vector).
! begin(): returns an iterator pointing to the vector’s first

element.
! end(): returns an iterator pointing to the vector’s past-
the-end element.

28

Sample code using vectors+iterators
#include <iostream>
#include <vector> // Include the vector header
using namespace std;

int main() {
 int count; // Loop counter
 vector<int> vect; // Define a vector of int object
 vector<int>::iterator iter; // Defines an iterator object

 // Use push_back to push values into the vector.
 for (count = 0; count < 10; count++)
 vect.push_back(count);

 // Step the iterator through the vector to display:
 cout << "Here are the values in vect: “ << endl;
 for (iter = vect.begin(); iter < vect.end(); iter++) {
 cout << *iter << " ";
 }

 // Step the iterator through the vector backwards.
 cout << "and here they are backwards: “ << endl;;
 for (iter = vect.end() - 1; iter >= vect.begin(); iter—) {
 cout << *iter << " ";
 }
}

29

Vector member function  
using iterator

! erase(iter): Removes from the vector either the
single element the iterator argument is referring to.

! erase reduces the vector size by 1.
int main ()
{
 vector<int> myvector;

 // set some values (from 1 to 10)
 for (int i=1; i<=10; i++) myvector.push_back(i);

 // erase the 6th element
 myvector.erase (myvector.begin()+5); //advances 5 times

 cout << "myvector contains:";
 for (int i=0; i<myvector.size(); i++)
 cout << ' ' << myvector[i];
 cout << endl;
}

