Analysis of Algorithms An Introduction

CS 3358 Spring 2015

Jill Seaman

Note: in this lecture "function" almost always refers to a mathematical function, as in f(x) = x+101

Sections 6.1, 6.2, 6.4 (optional), 6.6 (not 6.6.3)

Algorithms

- An <u>algorithm</u> is a clearly specified set of instructions a computer follows to solve a problem.
- An algorithm should be
 - correct
 - efficient: not use too much time or space
- Algorithm analysis: determining how much time and space a given algorithm will consume.

Algorithms

- Note that two very different algorithms can solve the same problem
 - bubble sort vs. quicksort
 - List insert in an array-based implementation vs. a linked-list-based implementation.
- How do we know which is faster (more efficient in time)?
- Why not just run both on same data and compare?

Algorithms

- Could measure the time each one takes to execute, but that is subject to various external factors
 - multitasking operating system
 - speed of computer
 - language solution is written in (compiler)
- Need a way to quantify the efficiency of an algorithm independently of execution platform, language, or compiler

Estimating execution time

- The amount of time it takes an algorithm to execute is a function of the input size.
- We use the <u>number of statements executed</u> (given a certain input size) as an approximation of the execution time.
- Count up statements executed for a program or algorithm as a function of the amount of data
 - For a list of length N, it may require executing 3N²+2N+125 statements to sort it using a given algorithm.

5

Counting statements

- Each single statement (assignment, output) counts as 1 statement
- A boolean expression (in an if stmt or loop) is 1 statement
- A function call is equal to the number of statements executed by the function.
- A loop is basically the number of times the loop executes times the number of statements executed in the loop.
 - usually counted in terms of N, the input size.

6

Counting statements example

```
int total(int[] values, int numValues)
{  int result = 0;
  for(int i = 0; i < numValues; i++)
     result += values[i];
  return result;
}</pre>
```

- What does N (input size) represent in this case?
 - the number of values in the array (==numValues)
- Tally up the statement count:
 - int result = 0; (1) result += values[i]; (N)
 - int i=0; (1) return result; (1)
 - i < numValues (N+1)

Total = 3N + 4

- j++ (N)

Comparing functions

- Is 3N+4 good? Is it better (less) than
 - 5N+5 ?
 - N+1,000 ?

for all values of N?

- $-N^2 + N + 2$?
- Hard to say without graphing them.
- Even then, are the differences significant?

Comparing functions

- When comparing these functions in algorithm analysis
 - We are concerned with very large values of N.
 - We tend to ignore all but the "dominant" term.

At large values of N, 3N dominates the 4 in 3N+4

- We also tend to ignore the constant factor (3).
- We want to know which function is growing faster (getting bigger for bigger values of N).

Function classifications

• Constant f(x)=b O(1)

• Logarithmic $f(x)=\log_b(x)$ O(log n)

• Linear f(x)=ax+b O(n)

• Linearithmic $f(x)=x \log_h(x)$ O(n log n)

• Quadratic $f(x)=ax^2+bx+c$ $O(n^2)$

• Exponential $f(x)=b^x$ $O(2^n)$

Last column is "big Oh" notation

10

Classifications of (math) functions

Constant	f(x)=b	O(1)
Logarithmic	$f(x)=log_b(x)$	O(log n)
Linear	f(x)=ax+b	O(n)
Linearithmic	$f(x)=x \log_b(x)$	O(n log n)
Quadratic	f(x)=ax ² +bx+c	O(n ²)
Exponential	f(x)=b ^x	O(2 ⁿ)

Last column is "big Oh notation", used in CS.

Comparing functions

- For a given function expressing the time it takes to execute a given algorithm in terms of N,
 - we ignore all but the dominant term and put it in one of the function classifications.
- Which classifications are more efficient?.
 - The ones that grow more slowly.

Comparing functions

Graph 1

Time

We want small Time value for large N values

13

Comparing functions

• Graph 2

Comparing functions

 Assume N is 100,000, processing speed is 1,000,000,000 operations per second

Function	Running Time
2 ^N	3.2 x 10 ³⁰⁰⁸⁶ years
N ⁴	3171 years
N ³	11.6 days
N ²	10 seconds
N log N	0.0017 seconds
N	0.0001 seconds
square root of N	3.2 x 10 ⁻⁷ seconds
log N	1.2 x 10 ⁻⁸ seconds

Formal Definition of Big O

"Order F of N"

- T(N) is O(F(N)) if there are positive constants c and N₀ such that T(N) <= cF(N) when N >= N₀
 - N is the size of the data set the algorithm works on
 - T(N) is the function that characterizes the actual running time of the algorithm (like 3N+4)
 - F(N) is a function that characterizes an upper bounds on T(N). It is a limit on the running time of the algorithm. (The typical Big O functions)
 - c and N_0 are constants. We pick them to make the definition work.

Example using definition

- Given T(N) = 3N + 4, prove it is O(N).
 - F(N) in the definition is N
 - We need to choose constants c and N_0 to make $T(N) \le cF(N)$ when $N \ge N_0$ true.
 - Lets try c = 4 and N_0 = 5.
 - Graph on next slide shows:
 3N+4 is less than 4N whenever N is bigger than 5

17

Demonstrating 3N+4 is O(N)

Big O is an upper bound (any upper bound)

- If T(N) is O(F(N)), then for big values of N, cF(N) is greater than T(N).
 - If T(N) is O(n), it is also O(n²).
 - If T(N) is O(n), it is also O(n³).
 - If T(N) is O(n), it is also O(n log n).
- But these statements are not very informative.
 - If T(N) is O(n), it may or may not be O(1).
- We prefer to state the tightest bound possible when analyzing algorithms.

Best, Average, Worst case analyses

Because certain data values may affect execution time (still functions of N):

- Best case: fewest possible statements executed considering all possible cases of input of size N
- Average case: average number of statements executed for all possible cases of input of size N
- Worst case: maximum number of statements that could be executed for all possible cases of input of size N

Consider examples 1 and 2 that follow:

Example 1:

```
bool findNum(double[] values, int numValues, double num)
{
   int found = false;
   for(int i = 0; i < numValues; i++)
       if(values[i] == num)
            found = true;
   return found;
}</pre>
```

- T(N) is O(F(N)) for what function F?
 - best case?
 - average case?
 - worst case?

Note: all have the same efficiency function for this code

21

Example 2:

```
bool findNum(double[] values, int numValues, double num)
{
   for(int i = 0; i < numValues; i++)
      if(values[i] == num)
      return true;
   return false;
}</pre>
```

- T(N) is O(F(N)) for what function F?
 - best case?
 - average case of all inputs that return true?
 - worst case?

22

Example 3:

```
Matrix Matrix::add(Matrix rhs)
{    Matrix sum = new Matrix(numRows(), numCols(), 0);
    for(int row = 0; row < numRows(); row++)
        for(int col = 0; col < numCols(); col++)
            sum.myMatrix[row][col] = myMatrix[row][col]
            + rhs.myMatrix[row][col];
    return sum;
}</pre>
```

• T(N) is O(F(N)) for what function F?

23

Example 4:

• T(N) is O(F(N)) for what function F?

2.

Example 5:

```
public int func(int[] list, int length){
  int total = 0;
  for(int i = 0; i < length; i++){
    total += countDups(list[i], list);
  }
  return total;
}
// method countDups is O(N) where N is the
// length of the array it is passed</pre>
```

25

• T(N) is O(F(N)) for what function F?

Example 6:

- Insert (and remove) for List_3358
 - implemented using arrays (in class: see below)
 - implemented using linked lists (see PA#2 solution)
- These operations are O(___)?

```
void List_3358::remove() {
   assert(!atEOL() && !isEmpty());
   for (int i=cursor; i < currentSize-1; i++)
     values[i] = values[i+1];
   currentSize--;
   if (isEmpty())
     cursor = EOL;
}</pre>
```