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Recursion 
Chapter 8

CS 3358 
Spring 2015 

Jill Seaman

Sections 8.1-8.4, (8.5 if you can)
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What is recursion?

! Generally, when something 
contains a reference to itself 

! Math: defining a function in terms 
of itself 

! Computer science: when a 
function calls itself
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How can a function call itself?

! What happens when this function is called?
void message() {
   cout << “This is a recursive function.\n”;
   message();
}

int main() {

    message();

}
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How can a function call itself?

! Infinite Recursion:
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.

...
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Recursive message() modified

! How about this one?
void message(int n) {
   if (n > 0) {
      cout << “This is a recursive function.\n”;
      message(n-1);
   }
}

int main() {
    message(5);
}
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Tracing the calls

! 6 nested calls to message: 

! depth of recursion (#times it calls itself) = 5.

message(5):
  outputs “This is a recursive function”
  calls message(4):
    outputs “This is a recursive function”
    calls message(3):
      outputs “This is a recursive function”
      calls message(2):
        outputs “This is a recursive function”
        calls message(1):
          outputs “This is a recursive function”
          calls message(0):
            does nothing, just returns

7

Why use recursion?
! It is true that recursion is never required to 

solve a problem 
- Any problem that can be solved with recursion can 

also be solved using iteration. 
! Recursion requires extra overhead: function call

+ return mechanism uses extra resources 

! Some repetitive problems are more easily and 
naturally solved with recursion 
- Iterative solution may be unreadable to humans

However:
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Why use recursion?
! Recursion is the primary method of performing 

repetition in most functional languages. 
- Implementations of functional languages are 

designed to process recursion efficiently 
- Iterative constructs that are added to many 

functional languages often don’t fit well in the 
functional context. 

! Once programmers adapt to solving problems 
using recursion, the code produced is generally 
shorter, more elegant, easier to read and debug.
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How to write recursive functions
! Branching is required!! (If or switch) 
! Find a base case 
- one (or more) values for which the result of the 

function is known (no repetition required to solve it) 
- no recursive call is allowed here 

! Develop the recursive case 
- For a given argument (say n), assume the function 

works for a smaller value (n-1). 
- Use the result of calling the function on n-1 to form a 

solution for n
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Recursive function example 
factorial

! Mathematical definition of n! (factorial of n) 

! What is the base case? 

! If we assume (n-1)! can be computed, how can 
we get n! from that?

if n=0 then   n! = 1
if n>0 then   n! = 1 x 2 x 3 x ... x (n-1) x n
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Recursive function example 
factorial

! Mathematical definition of n! (factorial of n) 

! What is the base case? 
- n=0  (result is 1) 

! If we assume (n-1)! can be computed, how can 
we get n! from that? 
- n! = n * (n-1)!

if n=0 then   n! = 1
if n>0 then   n! = 1 x 2 x 3 x ... x n
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Recursive function example 
factorial

int factorial(int n) {

   if (n==0)

      return 1;

   else

      return n * factorial(n-1);

}

int main() {

  int number;

  cout << “Enter a number “;

  cin >> number;

  cout << “The factorial of “ << number << “ is “

       << factorial(number) << endl;

}
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Tracing the calls

! Calls to factorial: 

! Every call except the last makes a recursive call 
! Each call makes the argument smaller

factorial(4):
  return 4 * factorial(3);
  calls factorial(3):
    return 3 * factorial(2);
    calls factorial(2):
      return 2 * factorial(1);
      calls factorial(1):
        return 1 * factorial(0);
        calls factorial(0):
          return 1;     

=2 * 1 = 2

=3 * 2 = 6

=4 * 6 = 24

=1 * 1 = 1
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Recursive functions over ints 
! Many recursive functions (over integers) look 

like this: 

! Note these functions are undefined for n < 0.

type f(int n) {
   if (n==0)
      //do the base case
   else
      // ...  f(n-1) ...
}
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Recursive functions over lists 
! You can write recursive functions over lists using 

the length of the list instead of n 
- base case: length=0  ==> empty list 
- recursive case: assume f works for list of length n-1, 

what is the answer for a list with one more element? 
! We will do examples with: 
- arrays 
- vectors 
- linked lists 
- strings
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Recursive function example 
sum of the list

! Recursive function to compute sum of a list of 
numbers 

! What is the base case? 
- length=0   (empty list)  sum = 0 

! If we assume we can sum the first n-1 items in 
the list, how can we get the sum of the whole list 
from that? 
- sum (list) = sum (list[0..n-2]) + list[n-1]

Assume I am given the answer to this, 
the sum of the first n-1 items
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Recursive function example 
sum of a list: array

int sum(int a[], int size) {  //size is number of elems

   if (size==0)

      return 0;

   else

      return sum(a,size-1) + a[size-1];

}

      

      sum(a,4) =

      (sum(a,3) + a[3]) =

      (sum(a,2) + a[2]) + a[3] =

      ((sum(a,1) + a[1]) + a[2]) + a[3] =

      (((sum(a,0) + a[0]) + a[1]) + a[2]) + a[3] =

      (((0        + a[0]) + a[1]) + a[2]) + a[3]

For a list with size = 4:  sum(a,4) 

The last elementcall sum on first n-1 elements
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Recursive function example 
sum of a list: vector

! v.pop_back() creates the shorter vector 
! Aren’t we removing all the elements from a? 

- No (why not?) 
- But something else bad is happening each time.

int sum(vector<int> v) {  

   if (v.size()==0)

      return 0;

   else {

      int x = v.back();

      v.pop_back();

      return x + sum(v);

   }

}

int main () {

    vector<int> a;

    a.push_back(10);

    a.push_back(20);

    a.push_back(30);

    

cout << "sum "<< sum(a) << endl;

cout << "size "<< a.size()<< endl;

}v.back() returns the last element

Hint: Pass by value

Hint: Pass by value
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Recursive function example 
sum of a list: vector without copying

! Sometimes an auxiliary or driver function is 
needed to set things up before starting recursion.

int sumRec(vector<int> & v) {  

   if (v.size()==0)

      return 0;

   else {

      int x = v.back();

      v.pop_back();

      return x + sumRec(v);

   }

}

int sum (const vector<int>  x) {

   // pass by value => x is a copy of the arg. 

   return sumRec(x);

}

Use pass by reference 
(it will change x)
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Recursive function example 
sum of a list: linked list

! Add a sum function to List_3358_LL.h 

// this is the public one

int List_3358::sum() {

   return sumNodes(head);

}

// this one is private

int List_3358::sumNodes(Node *p) {  

   if (p==NULL)

      return 0;

   else {

      int x = p->value;

      return x + sumNodes(p->next);

   }

}

sumNodes(p) will sum the 
Nodes starting with the one 
p points to until the end 
of the list (NULL)

passes address of the next Node, 
(making the list shorter)
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Summary of the list examples
! How to determine empty list, single element, and 

the shorter list to perform recursion on.

Array 
size is a parameter

Vector Linked list 
p points to first node

Base case size==0 v.size()==0 p==NULL

last(or first) 
element

a[size-1] v.back() p->value

shorter list 
(recursive call)

use size-1 v.pop_back()* p->next

*may need to copy original vector 22

The Substring function

! C++ string member function: substr 
- string substr (int pos, int len) const;
- pos position of the first character to be copied as a 

substring. Note: The first character is denoted by a value of 
0 (not 1). 

- len Number of characters to include in the substring. 
If pos+len is greater than the number of characters in 
the string, the whole value of the string beginning at 
start is returned.
string x = “hello there”;

cout << x.substr(3,5) << endl;

cout << x.substr(6,50) << endl;

lo th 
there 
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Recursive function example 
count character occurrences in a string

! Recursive function to count the number of times a 
specific character appears in a string 

! We will use the string member function substr to 
make a smaller string.

numChars(“Mississippi”,’s’)  ==> 4

string str = “Mississippi”;

cout << str.substr(1,str.size()) << endl;

ississippi 
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Recursive function example 
count character occurrences in a string

int numChars(char target, string str) {

    if (str.empty()) {

        return 0;

    } else {

        int result = numChars(target, str.substr(1,str.size()));

        if (str[0]==target)

            return 1+result;

        else

            return result;

    }

}

int main() {

  string a = "hello";

  cout << a << numChars('l',a) << endl;

}
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Three required properties 
of recursive functions

! A Base case 
- a non-recursive branch of the function body. 
- must return the correct result for the base case 

! Smaller caller 
- each recursive call must pass a smaller version of 

the current argument. 
! Recursive case 
- assuming the recursive call works correctly, the 

code must produce the correct answer for the 
current argument. 26

Recursive function example 
greatest common divisor

! Greatest common divisor of two non-zero ints is 
the largest positive integer that divides the 
numbers without a remainder 

! This is a variant of Euclid’s algorithm: 

! It’s a recursive mathematical definition 
! If x < y, then x%y is x  (so gcd(x,y) = gcd(y,x)) 
! This moves the larger number to the first position.

gcd(x,y) = y       if y divides x evenly, otherwise:
gcd(x,y) = gcd(y,remainder of x/y) //gcd(y,x%y) in c++
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Recursive function example 
greatest common divisor

! Code: 
int gcd(int x, int y) {  

    cout << "gcd called with " << x << " and " << y << endl;

    if (x % y == 0) {

        return y;

    } else {

        return gcd(y, x % y);

    }

}

int main() {

    cout << "GCD(9,1): " << gcd(9,1) << endl;

    cout << "GCD(1,9): " << gcd(1,9) << endl;

    cout << "GCD(9,2): " << gcd(9,2) << endl;

    cout << "GCD(70,25): " << gcd(70,25) << endl;

    cout << "GCD(25,70): " << gcd(25,70) << endl;

}
28

Recursive function example 
greatest common divisor

! Output: 
gcd called with 9 and 1

GCD(9,1): 1

gcd called with 1 and 9

gcd called with 9 and 1

GCD(1,9): 1

gcd called with 9 and 2

gcd called with 2 and 1

GCD(9,2): 1

gcd called with 70 and 25

gcd called with 25 and 20

gcd called with 20 and 5

GCD(70,25): 5

gcd called with 25 and 70

gcd called with 70 and 25

gcd called with 25 and 20

gcd called with 20 and 5

GCD(25,70): 5
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Recursive function example 
Fibonacci numbers

! Series of Fibonacci numbers: 

! Starts with 0, 1.  Then each number is the sum 
of the two previous  numbers 

! It’s a recursive definition

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

F0 = 0
F1 = 1
Fi = Fi-1 + Fi-2   (for i > 1)
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Recursive function example 
Fibonacci numbers

! Code: 
int fib(int x) {  

    if (x<=1)

        return x;

    else

        return fib(x-1) + fib(x-2);

}

int main() {

    cout << "The first 13 fibonacci numbers: " << endl;

    for (int i=0; i<13; i++)

        cout << fib(i) << " ";

    cout << endl;

}

The first 13 fibonacci numbers: 
0 1 1 2 3 5 8 13 21 34 55 89 144 
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Recursive function example 
Fibonacci numbers

! Modified code to count the number of calls to fib: 
int fib(int x, int &count) { 

    count++;

    if (x<=1)

        return x;

    else

        return fib(x-1, count) + fib(x-2, count);

}

int main() {

    cout << "The first 40 fibonacci numbers: " << endl;

    for (int i=0; i<40; i++) {

        int count = 0;

        int x = fib(i,count);

        cout << "fib (" << i << ")= " <<  x 

             << "  # of recursive calls to fib = " << count << endl;

    }

}
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Recursive function example 
Fibonacci numbers

! Counting calls to fib: output 
The first 40 fibonacci numbers: 

fib (0)= 0  # of recursive calls to fib = 1

fib (1)= 1  # of recursive calls to fib = 1

fib (2)= 1  # of recursive calls to fib = 3

fib (3)= 2  # of recursive calls to fib = 5

fib (4)= 3  # of recursive calls to fib = 9

fib (5)= 5  # of recursive calls to fib = 15

fib (6)= 8  # of recursive calls to fib = 25

fib (7)= 13  # of recursive calls to fib = 41

fib (8)= 21  # of recursive calls to fib = 67

fib (9)= 34  # of recursive calls to fib = 109

fib (10)= 55  # of recursive calls to fib = 177

fib (11)= 89  # of recursive calls to fib = 287

fib (12)= 144  # of recursive calls to fib = 465

fib (13)= 233  # of recursive calls to fib = 753

...

fib (40)= 102,334,155  # of recursive calls to fib = 331,160,281
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Recursive function example 
Fibonacci numbers

! Why are there so many calls to fib? 

! Say it computes fib(n-2) first. 
! When it computes fib(n-1), it computes fib(n-2) again   

! It’s not just double the work.  It’s double the work for 
each recursive call. 

! Each recursive call does more and more redundant 
work

fib(n) calls fib(n-1) and fib(n-2)

fib(n-1) calls fib((n-1)-1) and fib((n-1)-2)
             = fib(n-2)     and fib (n-3)
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Recursive function example 
Fibonacci numbers

! Trace of the recursive calls for fib(5) 

Fib(5)

Fib(4)

Fib(3)

Fib(3)

Fib(2) Fib(2) Fib(1)

Fib(2) Fib(1) Fib(1) Fib(0) Fib(1) Fib(0)

Fib(1) Fib(0)
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Recursive function example 
Fibonacci numbers

! The number of recursive calls is  
- larger than the Fibonacci number we are trying to 

compute 
- exponential, in terms of n 

! Never solve the same instance of a problem in 
separate recursive calls. 
- make sure f(m) is called only once for a given m
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Binary Search

! Find an item in a list, return the index or -1 
! Works only for SORTED lists 
! Compare target value to middle element in list. 
- if equal, then return index 
- if less than middle elem, search in first half 
- if greater than middle elem, search in last half 

! If search list is narrowed down to 0 elements, 
return -1 

! Divide and conquer style algorithm
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Binary Search 
Iterative version

int binarySearch(int array[], int size, int value)  {

    int first = 0,         // index of First array element

    last = size - 1,       // index of Last array element

    middle,                // index of Mid point of search

    position = -1;         // index of search value, when found

    bool found = false;    // Flag

    

    while (!found && first <= last) {

        middle = (first + last) / 2;     // Calculate mid point

// cout << “f: “ << first << “l: “ << last << “m: “ << middle << endl;

        if (array[middle] == value) {    // If value is found at mid

            found = true;

            position = middle;

        }

        else if (array[middle] > value)  // If value is in lower half

            last = middle - 1;

        else

            first = middle + 1;           // If value is in upper half

    }

    return position;

}
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Binary Search 
Example

The target of your search is 42. Given the following array of integers, record 
the values stored in the variables named first, last, and middle during 
each iteration of a binary search.
  

                       

Repeat the exercise with a target of 82:
first   0 0  4
last   14 6  6
middle  7 3  5 first   0

last   14
middle  7

1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

values:

indexes:
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Binary Search 
Recursive version

! Convert the iterative version to recursive 
! What is the base case? 
- empty list: result = -1 (not found) 

! What is the recursive case? 
- split list into: middle value, first half, last half 
- if target == middle value, then return its index 
- if target < middle elem, search in first half 
- if target > middle elem, search in last half 

! Need to add parameters for first and last index of 
the current subpart of the list to search.

two base cases

two recursive 
cases
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Binary Search 
Recursive version

int binarySearchRec(int array[], int first, int last, int value)

{

    if (first > last)           //check for empty list (base case)

        return -1;

    int middle = (first + last)/2;  //compute middle index

// cout << “f: “ << first << “l: “ << last << “m: “ << middle << endl;

    if (array[middle]==value)

        return middle;

    if (value < array[middle])    //recursion

        return binarySearchRec(array, first, middle-1, value);

    else

        return binarySearchRec(array, middle+1, last, value);

}

int binarySearch(int array[], int size, int value) {

    return binarySearchRec(array, 0, size-1, value);

}
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Binary Search  
Running time efficiency

! What is the Big-O analysis of the running time? 
! N is the length of the list to search 
! Worst case: keep dividing N by 2 until it is less 

than 1. 
! This is equivalent to doubling 1 until it gets to N. 
! Example: N=64:

1*2 = 2
2*2 = 4
4*2 = 8
8*2 = 16
16*2 = 32
32*2 = 64

After 6 steps we have 26

After k steps we have 2k
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Binary Search  
Running time efficiency

! How many steps does it take to double 1 and get 
to N? 

! How do we solve that for k? 
! Definition of logarithm (see math textbook): 

! So solving for k:

2k = N

logBN = k   if  Bk = N 

k = log2N 

The logarithm is the exponent
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Binary Search  
Running time efficiency

! How many steps does it take to repeatedly 
double 1 and get to N? 

! How many steps does it take to repeatedly 
divide N by 2 and get to 1? 

! Since (worst case) binary search repeatedly 
divides the length of the list by 2, until it gets 
down to one, its running time is 

log2N 

log2N 

O(log N) 


