Recursion

Chapter 8

CS 3358
Spring 2015
Jill Seaman

Sections 8.1-8.4, (8.5 if you can)

How can a function call itself?

- What happens when this function is called?

```
void message() {
    cout << "This is a recursive function.\n";
    message();
}
int main() {
    message();
}
```


What is recursion?

- Generally, when something contains a reference to itself
- Math: defining a function in terms of itself
- Computer science: when a function calls itself

How can a function call itself?

- Infinite Recursion:

```
This is a recursive function.
```


Recursive message() modified

- How about this one?

```
void message(int n) {
    if (n > 0) {
        cout << "This is a recursive function.\n";
        message(n-1);
    }
}
int main() {
    message(5);
}
```


Why use recursion?

- It is true that recursion is never required to solve a problem
- Any problem that can be solved with recursion can also be solved using iteration.
- Recursion requires extra overhead: function call + return mechanism uses extra resources

However:

- Some repetitive problems are more easily and naturally solved with recursion
Iterative solution may be unreadable to humans

Tracing the calls

- 6 nested calls to message:

```
message(5):
    outputs "This is a recursive function"
    calls message(4):
        outputs "This is a recursive function"
        calls message(3):
            outputs "This is a recursive function"
            calls message(2):
                outputs "This is a recursive function"
                calls message(1):
                    outputs "This is a recursive function"
            calls message(0):
                                    does nothing, just returns
```

- depth of recursion (\#times it calls itself) $=5$.

Why use recursion?

- Recursion is the primary method of performing repetition in most functional languages.
- Implementations of functional languages are designed to process recursion efficiently
Iterative constructs that are added to many functional languages often don't fit well in the functional context.
- Once programmers adapt to solving problems using recursion, the code produced is generally shorter, more elegant, easier to read and debug.

How to write recursive functions

- Branching is required!! (If or switch)
- Find a base case
one (or more) values for which the result of the function is known (no repetition required to solve it)
no recursive call is allowed here
- Develop the recursive case

For a given argument (say n), assume the function works for a smaller value ($n-1$).
Use the result of calling the function on $\mathrm{n}-1$ to form a solution for n

Recursive function example

 factorial- Mathematical definition of n ! (factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x ... x n
```

-What is the base case?

- $\mathrm{n}=0$ (result is 1)
- If we assume ($\mathrm{n}-1$)! can be computed, how can we get n ! from that?
$-n!=n$ * $(n-1)$!

Recursive function example

factorial

- Mathematical definition of n ! (factorial of n)

```
if n=0 then n! = 1
if n>0 then n! = 1 x 2 x 3 x ... x (n-1) x n
```

-What is the base case?

- If we assume ($\mathrm{n}-1$)! can be computed, how can we get n ! from that?

Recursive function example

factorial

```
int factorial(int n) {
    if (n==0)
        return 1;
    else
        return n * factorial(n-1);
}
int main() {
    int number;
    cout << "Enter a number ";
    cin >> number;
    cout << "The factorial of " << number << " is "
        << factorial(number) << endl;
}
```


Tracing the calls

- Calls to factorial:

```
factorial(4):
    return 4 * factorial(3); =4 * 6 = 24
    calls factorial(3):
        return 3 * factorial(2); =3*2=6
        calls factorial(2):
            return 2 * factorial(1); =2*1=2
            calls factorial(1):
            return 1 * factorial(0); =1 * 1=1
            calls factorial(0):
            return 1;
```

- Every call except the last makes a recursive call
- Each call makes the argument smaller

Recursive functions over lists

- You can write recursive functions over lists using the length of the list instead of n
- base case: length=0 ==> empty list
- recursive case: assume f works for list of length $\mathrm{n}-1$, what is the answer for a list with one more element?
- We will do examples with:
- arrays
- vectors
- linked lists
- strings

Recursive functions over ints

- Many recursive functions (over integers) look like this:

```
type f(int n) {
    if (n==0)
        //do the base case
    else
        // ... f(n-1) ...
}
```

- Note these functions are undefined for $\mathrm{n}<0$.

Recursive function example sum of the list

- Recursive function to compute sum of a list of numbers
-What is the base case?
- length=0 (empty list) sum = 0
- If we assume we can sum the first $\mathrm{n}-1$ items in the list, how can we get the sum of the whole list from that?
- sum (list) = sum (list[0..n-2]) + list[n-1]

Recursive function example
 sum of a list: array

int sum(int a[], int size) \{ //size is number of elems if (size==0) return 0;
else
return sum(a,size-1) $+\mathrm{a}[$ size-1];
\}
call sum on first $\mathrm{n}-1$ elements The last element
For a list with size $=4: \operatorname{sum}(a, 4)$
$\operatorname{sum}(a, 4)=$
$(\operatorname{sum}(a, 3)+a[3])=$
$(\operatorname{sum}(a, 2)+a[2])+a[3]=$
$((\operatorname{sum}(a, 1)+a[1])+a[2])+a[3]=$
$(((\operatorname{sum}(a, 0)+a[0])+a[1])+a[2])+a[3]=$
$(()+a[0])+a[1])+a[2])+a[3]$

Recursive function example

sum of a list: vector without copying

```
int sumRec(vector<int> & v) {
    if (v.size()==0)
        return 0;
        else {
            int x = v.back();
            v.pop_back();
            return x + sumRec(v);
        }
    }
int sum (const vector<int> x) {
        // pass by value => x is a copy of the arg.
        return sumRec(x);
}
```

- Sometimes an auxiliary or driver function is needed to set things up before starting recursion.

Recursive function example

sum of a list: vector

```
int sum(vector<int> v) {
    if (v.size()==0)
        return 0;
    else {
        int x = v.back();
        v.pop_back();
        return x + sum(v);
    }
        v.back() returns the last element
```

- v.pop_back() creates the shorter vector
- Aren't we removing all the elements from a?
 - No (why not?)
Hint: Pass by value
- But something else bad is happening each time. Hint: Pass by value

Recursive function example

sum of a list: linked list

- Add a sum function to List_3358_LL.h

```
// this is the public one
int List_3358::sum() {
    return sumNodes(head);
}
// this one is private
int List_3358::sumNodes(Node *p) { p points to until the end
    if (p==NULL)
        return 0;
    else {
        int x = p->value;
        return x + sumNodes(p->next);
    }
}
passes address of the next Node,
sumNodes(p) will sum the Nodes starting with the one p points to until the end of the list (NULL)
```

 M
 else {
    ```
\(\qquad\)

\section*{Summary of the list examples}
- How to determine empty list, single element, and the shorter list to perform recursion on.
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l} 
Array \\
size is a parameter
\end{tabular} & Vector & \begin{tabular}{l} 
Linked list \\
p points to first node
\end{tabular} \\
\hline Base case & size==0 & v.size( )==0 & p==NULL \\
\hline \begin{tabular}{l} 
last(or first) \\
element
\end{tabular} & a[size-1] & v.back() & p->value \\
\hline \begin{tabular}{l} 
Shorter list \\
(recursive call)
\end{tabular} & use size-1 & v.pop_back ( ) * & p->next \\
\hline
\end{tabular}

\section*{Recursive function example}
count character occurrences in a string
- Recursive function to count the number of times a specific character appears in a string
numChars("Mississippi",'s') ==> 4
- We will use the string member function substr to make a smaller string.
```

string str = "Mississippi";
cout << str.substr(1,str.size()) << endl;

```

\section*{ississippi}

\section*{The Substring function}
- C++ string member function: substr string substr (int pos, int len) const; pos position of the first character to be copied as a substring. Note: The first character is denoted by a value of 0 (not 1).
len Number of characters to include in the substring. If pos+len is greater than the number of characters in the string, the whole value of the string beginning at start is returned.
string \(x\) = "hello there";
cout \(\ll\) x.substr \((3,5) \ll\) endl; \(\square\)
22

\section*{Recursive function example \\ count character occurrences in a string}
```

int numChars(char target, string str) {
if (str.empty()) {
return 0;
} else {
int result = numChars(target, str.substr(1,str.size()))
if (str[0]==target)
return 1+result;
else
return result;
}
}
int main() {
string a = "hello";
cout << a << numChars('l',a) << endl;
}

Three required properties
 of recursive functions

- A Base case

- a non-recursive branch of the function body.
- must return the correct result for the base case
- Smaller caller
each recursive call must pass a smaller version of the current argument.
- Recursive case
assuming the recursive call works correctly, the code must produce the correct answer for the current argument.

Recursive function example

greatest common divisor

- Code:

```
int gcd(int x, int y) {
    cout << "gcd called with " << x << " and " << y << endl;
    if (x % y == 0) {
        return y;
    } else {
        return gcd(y, x % y);
    }
}
int main() {
    cout << "GCD(9,1): " << gcd(9,1) << endl;
    cout << "GCD(1,9): " << gcd(1,9) << endl;
    cout << "GCD(9,2): " << gcd(9,2) << endl;
    cout << "GCD(70,25): " << gcd(70,25) << endl;
    cout << "GCD(25,70): " << gcd(25,70) << endl;
}

\section*{Recursive function example}
greatest common divisor
- Greatest common divisor of two non-zero ints is the largest positive integer that divides the numbers without a remainder
- This is a variant of Euclid's algorithm:
```

gcd}(x,y)=y\quad if y divides x evenly, otherwise
gcd(x,y) = gcd(y,remainder of x/y) //gcd(y,x%y) in c++

```
- It's a recursive mathematical definition
- If \(x<y\), then \(x \% y\) is \(x(\operatorname{sogcd}(x, y)=\operatorname{gcd}(y, x))\)
- This moves the larger number to the first position.

\section*{Recursive function example}
greatest common divisor
- Output:
gcd called with 9 and 1
\[
\operatorname{GCD}(9,1): 1
\]
gcd called with 1 and 9
gcd called with 9 and 1
GCD(1,9): 1
gcd called with 9 and 2
gcd called with 2 and 1
\(\operatorname{GCD}(9,2): 1\)
gcd called with 70 and 25 gcd called with 25 and 20 gcd called with 20 and 5 \(\operatorname{GCD}(70,25): 5\)
gcd called with 25 and 70 gcd called with 70 and 25 gcd called with 25 and 20 gcd called with 20 and 5 \(\operatorname{GCD}(25,70): 5\)

\section*{Recursive function example}

Fibonacci numbers
- Series of Fibonacci numbers:
```

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

```
- Starts with 0,1 . Then each number is the sum of the two previous numbers
```

F0}=
F
Fi}=\mp@subsup{F}{i-1}{}+\mp@subsup{F}{i-2}{}\quad(for i > 1

```
- It's a recursive definition

\section*{Recursive function example} Fibonacci numbers
- Modified code to count the number of calls to fib:
int fib(int \(x\), int \&count) \{
count++;
if ( \(x<=1\) )
return \(x\);
else
return fib(x-1, count) + fib( \(x-2\), count);
\}
int main() \{
cout << "The first 40 fibonacci numbers: " << endl;
for (int \(i=0 ; i<40 ; i++)\{\)
int count \(=0\);
int \(x=f i b(i\), count \() ;\)
cout << "fib (" << i << ")= " << x
<< " \# of recursive calls to fib = " << count << endl;
\}

\section*{Recursive function example}

Fibonacci numbers
- Code:
```

int fib(int x) {
if (x<=1)
return x;
else
return fib(x-1) + fib(x-2);
}

```
int main() \{
    cout << "The first 13 fibonacci numbers: " << endl;
    for (int \(i=0 ; i<13 ; i++\) )
            cout << fib(i) << " ";
    cout << endl;
\}

The first 13 fibonacci numbers:
\(\begin{array}{lllllllllllll}0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144\end{array}\)

\section*{Recursive function example}

Fibonacci numbers

\section*{- Counting calls to fib: output}

The first 40 fibonacci numbers:
fib (0)= 0 \# of recursive calls to fib \(=1\)
fib (1)=1 \# of recursive calls to fib \(=1\)
fib (2)=1 \# of recursive calls to fib \(=3\)
fib (3) \(=2\) \# of recursive calls to fib \(=5\)
fib (4)= 3 \# of recursive calls to fib \(=9\)
fib (5) \(=5\) \# of recursive calls to fib \(=15\)
fib (6) \(=8\) \# of recursive calls to fib \(=25\)
fib (7)= 13 \# of recursive calls to fib \(=41\)
fib (8)= 21 \# of recursive calls to fib = 67
fib (9) \(=34\) \# of recursive calls to fib \(=109\)
fib (10) \(=55\) \# of recursive calls to fib \(=177\)
fib (11)= 89 \# of recursive calls to fib \(=287\)
fib (12)= 144 \# of recursive calls to fib \(=465\)
fib (13) \(=233\) \# of recursive calls to fib \(=753\)
fib \((40)=102,334,155\) \# of recursive calls to \(\mathrm{fib}=331,160,281\)

\section*{Recursive function example}

Fibonacci numbers
- Why are there so many calls to fib?
fib(n) calls fib(n-1) and fib(n-2)
- Say it computes fib(n-2) first.
- When it computes fib(n-1), it computes fib(n-2) again
```

fib(n-1) calls fib((n-1)-1) and fib((n-1)-2)
=fib(n-2) and fib (n-3)

```
- It's not just double the work. It's double the work for each recursive call.
- Each recursive call does more and more redundant work

33

\section*{Recursive function example}

Fibonacci numbers
- The number of recursive calls is
- larger than the Fibonacci number we are trying to compute
- exponential, in terms of \(n\)
- Never solve the same instance of a problem in separate recursive calls.
- make sure \(f(m)\) is called only once for a given \(m\)

\section*{Recursive function example}

Fibonacci numbers
- Trace of the recursive calls for fib(5)


34

\section*{Binary Search}
- Find an item in a list, return the index or -1
- Works only for SORTED lists
- Compare target value to middle element in list.
- if equal, then return index
- if less than middle elem, search in first half
- if greater than middle elem, search in last half
- If search list is narrowed down to 0 elements, return -1
- Divide and conquer style algorithm

\section*{Binary Search}

Iterative version
int binarySearch(int array[], int size, int value) \{ int first \(=0\), // index of First array element last = size - 1, // index of Last array element middle, // index of Mid point of search position \(=-1\); // index of search value, when found bool found = false; // Flag
while (!found \&\& first <= last) \{
middle \(=(\) first + last) / 2; // Calculate mid point
// cout << "f: " << first << "l: " << last << "m: " << middle << endl;
if (array[middle] == value) \{ // If value is found at mid found = true;
position = middle;
\}
else if (array[middle] > value) // If value is in lower half last = middle - 1;
else
first = middle + 1; // If value is in upper half
\}
return position;

\section*{Binary Search}

Recursive version
- Convert the iterative version to recursive
- What is the base case?
- empty list: result = -1 (not found)
- What is the recursive case?
- split list into: middle value, first half, last half - if target == middle value, then return its index - if target < middle elem, search in first half - if target > middle elem, search in last half
- Need to add parameters for first and last index of the current subpart of the list to search.

\section*{Binary Search}

\section*{Example}

The target of your search is 42 . Given the following array of integers, record the values stored in the variables named first, last, and middle during each iteration of a binary search.
values:
indexes:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{1}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{1 4}\) & \(\mathbf{2 0}\) & \(\mathbf{4 2}\) & \(\mathbf{5 5}\) & \(\mathbf{6 7}\) & \(\mathbf{7 8}\) & \(\mathbf{1 0 1}\) & \(\mathbf{1 1 2}\) & \(\mathbf{1 2 2}\) & \(\mathbf{1 7 0}\) & \(\mathbf{1 7 9}\) & \(\mathbf{1 9 0}\) \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline
\end{tabular}

Repeat the exercise with a target of 82 :
```

lirst rrrre

```

Repeat the exercise with a target of
\begin{tabular}{|lr|}
\hline first & 0 \\
last & 14 \\
middle & 7 \\
\hline
\end{tabular}

\section*{Binary Search}

\section*{Recursive version}
\{
if (first > last) //check for empty list (base case return -1;
int middle \(=(\) first + last)/2; //compute middle index
// cout << "f:" << first << "l:" << last <<"m:" << middle << endl;
if (array[middle]==value)
return middle;
if (value < array[middle]) //recursion return binarySearchRec(array, first, middle-1, value) else
return binarySearchRec(array, middle+1, last, value);
\}
int binarySearch(int array[], int size, int value) \{ return binarySearchRec(array, 0, size-1, value);

\section*{Binary Search}

Running time efficiency
- What is the Big-O analysis of the running time?
- \(N\) is the length of the list to search
- Worst case: keep dividing N by 2 until it is less than 1.
- This is equivalent to doubling 1 until it gets to N .
- Example: \(\mathrm{N}=64\) :
\(1 * 2=2\)
\(2 * 2=4\)
\(4 * 2=8\)
\(8 * 2=16\)
After 6 steps we have \(2^{6}\)
\(16 * 2=32\)
\(32 * 2=64\)
After k steps we have \(2^{k}\)
41

\section*{Binary Search}

Running time efficiency
- How many steps does it take to double 1 and get to N ?
\[
2^{k}=\mathrm{N}
\]
- How do we solve that for \(k\) ?
- Definition of logarithm (see math textbook):
```

log}\mp@subsup{B}{B}{}N=k\quad\mathrm{ if }\mp@subsup{B}{}{k}=N\quadT\quadThe logarithm is the exponen

```
- So solving for \(k: \quad k=\log _{2} N\)

\section*{Binary Search}

Running time efficiency
- How many steps does it take to repeatedly double 1 and get to N ?
\(\log _{2} \mathrm{~N}\)
- How many steps does it take to repeatedly divide N by 2 and get to 1 ?

\section*{\(\log _{2} N\)}
- Since (worst case) binary search repeatedly divides the length of the list by 2 , until it gets down to one, its running time is
\[
O(\log N)
\]```

