
1

Week 4
Pointers & Structs

Gaddis: Chapters 9, 11

CS 5301
Spring 2015

Jill Seaman

2

Pointers and Addresses

! The address operator (&) returns the address of a
variable.

! Pointer: a variable that stores the address of another
variable, providing indirect access to it.

! An asterisk is used to define a pointer variable 

! “ptr is a pointer to an int”. It can contain addresses of
int variables.

int x;
cout << &x << endl; // 0xbffffb0c

int *ptr;

ptr = &x;

3

Dereferencing and initializing

! The unary operator * is the dereferencing operator.
! *ptr is an alias for the variable that ptr points to.

! Initialization:

! ptr is a pointer to an int, and it is initialized to the
address of x.

int x = 10;
int *ptr; //declaration, NOT dereferencing
ptr = &x; //ptr gets the address of x
*ptr = 7; //the thing ptr pts to gets 7

int x = 10;
int *ptr = &x; //declaration, NOT dereferencing

4

Pointers as Function Parameters

! Use pointers to implement pass by reference.�
�
�
�
�
�

! How is it different from using reference
parameters?

//prototype: void changeVal(int *);

void changeVal (int *val) {
 *val = *val * 11;
}

int main() {
 int x;
 cout << "Enter an int " << endl;
 cin >> x;
 changeVal(&x);
 cout << x << endl;
}

5

Pointers and Arrays

! You can treat an array variable as if it were a pointer
to its first element.
int numbers[] = {10, 20, 30, 40, 50};

cout << “first: ” << numbers[0] << endl;
cout << “first: ” << *numbers << endl;

cout << &(numbers[0]) << endl;
cout << numbers << endl;

first: 10
first: 10
0xbffffb00
0xbffffb00

Output:

6

Pointer Arithmetic
! When you add a value n to a pointer, you are actually

adding n times the size of the data type being
referenced by the pointer.

! Note: array[index] is equivalent to *(array + index)

int numbers[] = {10, 20, 30, 40, 50};

// sizeof(int) is 4.
// Let us assume numbers is stored at 0xbffffb00
// Then numbers+1 is really 0xbffffb00 + 1*4, or 0xbffffb04
// And numbers+2 is really 0xbffffb00 + 2*4, or 0xbffffb08
// And numbers+3 is really 0xbffffb00 + 3*4, or 0xbffffb0c

cout << “second: ” << numbers[1] << endl;
cout << “second: ” << *(numbers+1) << endl;

cout << "size: " << sizeof(int) << endl;
cout << numbers << endl;
cout << numbers+1 << endl;

second: 20
second: 20
size: 4
0xbffffb00
0xbffffb04

Output:

7

Pointers and Arrays
! pointer operations * + can be used with array

variables.�

! subscript operations: [] can be used with
pointers.�

int list[10];
cin >> *(list+3);

int list[] = {1,2,3};
int *ptr = list;
cout << ptr[2];

8

Comparing Pointers
! pointers (addresses) maybe compared using the

relational operators: �
 < <= > >= == !=

! Examples:�
�

! What is the difference?
− ptr1 < ptr2
− *ptr1 < *ptr2

int arr[25];

cout << (&arr[1] > &arr[0]) << endl;
cout << (arr == &arr[0]) << endl;
cout << (arr <= &arr[20]) << endl;
cout << (arr > arr+5) << endl;

9

Dynamic Memory Allocation

! When a function is called, memory for local
variables is automatically allocated.

! When a function exits, memory for local variables
automatically disappears.

! Must know ahead of time the maximum number of
variables you may need.

! Dynamic Memory allocation allows your program to
create variables on demand, during run-time.

10

The new operator

! “new” operator requests dynamically allocated
memory for a certain data type:�
�

! new operator returns address of newly created
anonymous variable.

! use dereferencing operator to access it:

int *iptr;
iptr = new int;

*iptr = 11;
cin >> *iptr;
int value = *iptr / 3;

11

Dynamically allocated arrays

! dynamically allocate arrays with new:

! Program will throw an exception and terminate if
not enough memory available to allocate

int *iptr; //for dynamically allocated array
int size;

cout << “Enter number of ints: “;
cin >> size;
iptr = new int[size];

for (int i=1; i<size; i++) {
 iptr[i] = i;
}

12

delete!
! When you are finished using a variable created

with new, use the delete operator to destroy it:�
�
�

! Do not “delete” pointers whose values were NOT
dynamically allocated using new!

! Do not forget to delete dynamically allocated
variables (Memory Leaks!!).�

int *ptr;
double *array;

ptr = new int;
array = new double[25];
. . .
delete ptr;
delete [] array; // note [] required for dynamic arrays!

13

Returning Pointers from Functions

! functions may return pointers:�
�
�
�

! The returned pointer must point to
− dynamically allocated memory OR
− an item passed in via an argument

int * findZero (int arr[]) {
 int *ptr;
 ptr = arr;
 while (*ptr != 0)
 ptr++;
 return ptr;
}

NOTE: the return type of this function is
(int *) or pointer to an int.

NOTE: if the function returns dynamically allocated memory,
then it is the responsibility of the calling function to delete it. 14

Returning Pointers from Functions:�
duplicateArray

int a [5] = {11, 22, 33, 44, 55};
int *b = duplicateArray(a, 5);
for (int i=0; i<5; i++)
 if (a[i] == b[i])
 cout << i << “ ok” << endl;
delete [] b; //caller deletes mem

0 ok
1 ok
2 ok
3 ok
4 ok

Output

int *duplicateArray (int *arr, int size) {

 int *newArray;
 if (size <= 0) //size must be positive
 return NULL; //NULL is 0, an invalid address

 newArray = new int [size]; //allocate new array

 for (int index = 0; index < size; index++)
 newArray[index] = arr[index]; //copy to new array

 return newArray;
}

15

Structures
! A structure stores a collection of objects of

various types
! Each element in the structure is a member, and

is accessed using the dot member operator.

Student student1, student2;
student1.name = “John Smith”;
Student student3 = {123456,”Ann Page”,22,”Math”};

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

Defines a new data type

Defines new variables

16

Structures: operations

! Valid operations over entire structs:
− assignment: student1 = student2;
− function call: myFunc(gradStudent,x);  

 

! Invalid operations over structs:
− comparison: student1 == student2
− output: cout << student1;
− input: cin >> student2;
− Must do these member by member

void myFunc(Student, int); //prototype

17

Arrays of Structures

! You can store values of structure types in arrays.

! Each student is accessible via the subscript
notation.

! Members of structure accessible via dot notation

Student roster[40]; //holds 40 Student structs

roster[0] = student1; //copy student1 into 1st position

cout << roster[0].name << endl;

18

Arrays of Structures: initialization

! To initialize an array of structs:
struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

int main()
{
 Student roster[] = {
 {123456,"Ann Page",22,"Math"},
 {111222,"Jack Spade",18,"Physics"}
 };

}

19

Arrays of Structures

! Arrays of structures processed in loops:
Student roster[40];

//input
for (int i=0; i<40; i++) {
 cout << "Enter the name, age, idNumber and "
 << "major of the next student: \n";
 cin >> roster[i].name >> roster[i].age
 >> roster[i].idNumber >> roster[i].major;
}

//output all the id numbers and names
for (int i=0; i<40; i++) {
 cout << roster[i].idNumber << endl;
 cout << roster[i].name << endl;
} 20

Passing structures to functions
! Structure variables may be passed as

arguments to functions:
void getStudent(Student &s) { // pass by reference
 cout << "Enter the name, age, idNumber and "
 << "major of the student: \n";
 cin >> s.name >> s.age >> s.idNumber >> s.major;
}

void showStudent(Student x) {
 cout << x.idNumber << endl;
 cout << x.name << endl;
 cout << x.age << endl;
 cout << x.major << endl;
}

// in main:
Student student1;
getStudent(student1);
showStudent(student1);

21

Pointers to structures

! We can define pointers to structures

! To access the members via the pointer:

! dot operator has higher precedence, so use ():

! or equivalently, use ->:

Student s1 = {12345,“Jane Doe”, 18, “Math”};
Student *ptr = &s1;

cout << *ptr.name << end; // ERROR: *(ptr.name)

cout << (*ptr).name << end;

cout << ptr->name << end;
22

Dynamically Allocating Structures

! Structures can be dynamically allocated with new:

! Arrays of structures can also be dynamically
allocated:

Student *sptr;
sptr = new Student;

sptr->name = “Jane Doe”;
sptr->idNum = 12345;
...
delete sptr;

Student *sptr;
sptr = new Student[100];
sptr[0].name = “John Deer”;
...
delete [] sptr;

No arrows (->) necessary.
It’s just an array of Student

23

Sample Problem 1

! Array Expander: Write a function expander that
accepts an int array and the array’s size as
arguments. The function should create a new array
that is twice the size of the argument array. The
function should copy the contents of the argument
array to the new array and initialize the unused
elements of the second array with 0. The function
should return a pointer to the new array.

! Write a driver that calls the expander function, and
outputs the resulting array. Be sure to deallocate any
dynamically allocated memory.

24

Sample Problem 2

! Soccer Scores: Write a program that stores the
following data about a soccer player in a structure:

 Player’s Name
 Player’s Number
 Points Scored by Player

The program should keep an array of 12 of these
structures. Each element is for a different player on a
team. When the program runs it should ask the user
to enter the data for each player. The program should
calculate and display the total points earned by the
team. The number and name of the player who has
earned the most points should also be displayed.

