
Modeling with UML
Chapter 2, part 1

CS 4354

Summer II 2015

Jill Seaman

1

What is UML?

• Unified Modeling Language

• UML is a graphical notation to articulate (and communicate)

complex ideas in Object-Oriented software development

• UML resulted from a unification of many existing notations.

• The goal of UML is to provide a standard notation that can be used

by all object-oriented development methods (software processes)

• UML includes:

✦Use Cases and Use Case Diagrams

✦Class Diagrams

✦Sequence Diagrams

2

✦State Diagrams

✦Activity Diagrams

What is a Model?

• A Model is

✦ a means for dealing with complexity.

✦ an abstract description of a system that focuses on interesting aspects

and ignores irrelevant details

✦ an abstraction describing a subset of a system.

✦ NOT a diagram or notation

3

Object-oriented modeling

• The application domain is all aspects of the customer’s “problem”.

✦ physical environment

✦ users and other people

✦ their work processes, etc.

✦Object-oriented analysis models the application domain

• The solution domain is the modeling space of all possible solutions.

✦ represents system design and object design

✦ richer and more volatile than application domain, more detail.

✦ Object-oriented design models the solution domain

• Both use the same representation (classes, associations, etc)

4

Application domain and Solution Domain

5

Note the System Model contains the
Application domain model.

Use Case Diagrams

• Use Cases represent the functionality of the system from an
external point of view.

• An Actor is an external entity that interacts with the system.

✦ different kinds of users (roles), other systems, etc.

• A Use case is a textual description of the behavior of the system
from an actor’s point of view.

✦ overview of one user/system interaction

✦ focused on one goal of an actor

✦ described as a set of events.

✦ yields a visible/observable result for the actor

6

Use case diagram for a simple watch

7

• Actors are stick figures
• Use cases are ovals, with name usually inside the oval
• The boundary of the system is the box
• Each oval must have a textual description of the use case!!

Use Case: textual descriptions

• The textbook uses a template with six fields

✦ Name: unique in the system model, usually a verb-noun phrase

✦ Participating actors: actors interacting with use case

✦ Entry conditions: must be true to initiate use case

✦ Flow of events: describes the sequence of interactions, numbered for

reference. States what user does and what the system does.

✦ Exit conditions: will be true after use case is complete

✦ Quality requirements: not related to functionality (constraints on

performance, etc.)

• These fields are not “standard”, may see many variations.

8

Use case textual description for Report Emergency

9

Use Case Name Report Emergency
Participating Actors Initiated by FieldOfficer, Communicates with Dispatcher
Flow of Events 1.The FieldOfficer Activates the “Report Emergency” function of her

terminal.

2.The System responds by presenting a form to the FieldOfficer.

3.The FieldOfficer fills out the form by selecting the emergency level type,

location, and brief description of the situation. The FieldOfficer also
describes possible responses to the emergency situation. When
complete, the FieldOfficer submits the form.

4.The System receives the form and notifies the Dispatcher.

5.The Dispatcher reviews the submitted information and creates an incident

in the database by invoking the OpenIncident use case. The Dispatcher
selects a response and acknowledges the report.

6.The System displays the acknowledgment and the selected response to
the FieldOfficer.

Entry Condition The FieldOfficer is logged into the system.
Exit Condition The FieldOfficer has received an acknowledgement and the selected

response from the Dispatcher
Quality

Requirements

The FieldOfficer’s report is acknowledged within 30 seconds.

The selected response arrives no later than 30 seconds after it is sent by
the Dispatcher.

Use Case Diagrams:

• 3 kinds of relationships (to represent “reuse”/avoid copying)

✦ Inclusion

✦ Inheritance/Generalization

✦ Extension

10

Include relationship

• Used when multiple use cases share a common step or event

✦ Like a function call.

• For example, assume the Dispatcher can at any time press a key to
access a street map:

✦ Make a new use case called “ViewMap” (with its own description)

✦ In the OpenIncident and AllocateResources use cases, the flow of events

will specify when the ViewMap use case can take place.

11

Example include relationship use case diagram

12

• Dashed arrow points to the included use case

• Arrow is labeled with <<include>>

viewMap

Inheritance/Generalization relationship

• Used when one use case is a specialization of another

✦It adds more detail

• For example, assume FieldOfficers are required to authenticate
before they can use Friend:

✦ Early stages of modeling has one simple use case called Authenticate

✦ Later stages add two specific ways of authenticating, called

AuthenticateWithPassword and AuthenticateWithCard

• Textual description of the specialized use case:

✦ Inherits all of the parts of the base use case, except as specified in the

derived use case.

✦ For example, only the Flow of Events are different from the base use case.

13

Example inheritance relationship use case diagram

14

• Arrow with open arrowhead points from
derived use case to the base use case

Extend relationship

• Used and described differently in different sources

• Used to add events or details to an existing use case, especially

exceptional behavior

• M. Fowler says the “base” use case must declare certain

“extension points”, like certain variables or parameters in the base
use case.

• The extending use case provides values or detail for these
extension points.

• An extending use case can extend more than one base case, as
long as the base cases have the same extension points.

✦The base use case requires no “knowledge” of its extending use cases.

15

Example extend relationship use case diagram

16

• Dashed arrow points from the extended use
case to the base use case

• Arrow is labeled with <<extend>>

• Extension points can be listed in the base use
case oval.

A larger sample use case diagram

17

How could the names of

the use cases be improved?

When and how to use Use Case (Diagram)s

• Use during requirements analysis to capture the requirements.

✦ Do it in combination with modeling the application domain concepts (this

helps explain and uncover new use cases).

• Remember: Use cases represent an external view of the system
(don’t expect them to appear as classes in the system).

• With Use cases, the textual descriptions are more important than
the Use case diagrams.

✦ The use case textual descriptions contain the details necessary for design

and implementation.

✦ The diagram is just a good summary of the use cases.

18

