
Chapter 8: 
Object design: Reusing Pattern Solutions (Part I)

CS 4354

Summer II 2015


Jill Seaman

1

Object Design: closing the gap
Problem 

Machine 

System design gap 

Object design gap 

Requirements gap 

System 

Application objects 

Solution objects 

Custom objects 

Off-the-shelf components 

Object design closes the gap between application objects identified during 
Analysis and “off-the-shelf components” selected during System Design.

2

Application Objects and Solution Objects

• Application Objects, also called “domain objects”, represent 
concepts of the domain that are relevant to the system.

✦Primarily entity objects, identified during analysis.

✦Independent of any hardware or operating system.


• Solution Objects represent components that do not have a 
counterpart in the application domain, such as persistent data 
stores, user interface objects, or middleware.

✦Includes boundary and control objects, identified during analysis.

✦More solution objects are identified during system design and object 

design, as part of their processes

3

Specification Inheritance and 
Implementation Inheritance

• Specification Inheritance is the classification of concepts into 
type hierarchies

✦Conceptually, subclass is a specialization of its superclass.

✦Conceptually, superclass is a generalization of all of its subclasses.


• Implementation Inheritance is the use of inheritance for the sole 
purpose of reusing code (from the superclass).

✦the generalization/specialization relationship is usually lacking (or 

backwards).

✦example: Set implemented by inheriting from Hashtable

4



Java Hashtable

• Description: This class implements a hashtable, which maps keys 
to values. 

✦Any non-null object can be used as a key or as a value. 

• Hashtable methods

✦put(key,element)    

Maps the specified key to the specified value in this hashtable.

✦get(key) : Object 

Returns the value to which the specified key is mapped, or null if this map 
contains no mapping for the key.


✦containsKey(key): boolean

✦containsValue(element):boolean

5

Set

• The interface to be implemented: 
• Description: A collection that contains no duplicate elements.  
• Set methods


✦put(element)    
Adds the specified element to this set if it is not already present 


✦containsValue(element):boolean 
Returns true if the element is in the set, else false.

6

Set implemented by extending Hashtable

7

Hashtable 

MySet 

put(element) 
containsValue(element):boolean 

put(key,element) 
get(key):Object 
containsKey(key):boolean 
containsValue(element):boolean 

// Set implemented using inheritance 
class MySet extends Hashtable {

MySet() { ...
}
void put(Object element) {

if (!containsKey(element)){
put(element, this);

}
}
boolean containsValue(Object element){

return containsKey(element);
}
/* Other methods omitted */

}

Evaluation of the inheritance version

• Good: code reuse

• Bad: Set is not a specialization of Hashtable


✦it inherits methods that don’t make sense for it: 
  put(key, element), containsKey() 
Potential problem: a client class uses these methods on MySet, and then 
MySet is changed to inherit from some other class (like List).  (Fragile)


✦it doesn’t work as a Hashtable 
It cannot be used correctly as a special kind of Hashtable (ie passed to a 
function that takes Hashtable as an argument) 
Specifically containsValue() will not work as expected.


• Liskov Substitution Property: if S is a subclass of T, then objects 
of type T may be replaced with objects of type S without altering 
any of the desirable properties of the program. [Wikipedia]

8



Set implemented using composition/delegation

9

// Set Implemented using delegation 
class MySet {
   private Hashtable table;

MySet() {
table = Hashtable();

}
void put(Object element) {

if (!containsValue(element)){
table.put(element,this);

}
}
boolean containsValue(Object element) {

return(table.containsKey(element));
}

}

Hashtable 

MySet 

put(element) 
containsValue(element):boolean 

put(key,element) 
get(key):Object 
containsKey(key):boolean 
containsValue(element):boolean 

table 1 

1 

Delegation

• Delegation: A special form of composition 

✦One class (A) contains a reference to another (B) (via member variable)

✦A implements its operations/methods by calling methods on B.  

(Methods may have different names)  

✦Makes explicit the dependencies between A and B. 

• Addresses problems of implementation inheritance:

✦Not Fragile 

Internal representation of A can be changed without impacting clients of A 
(methods of B are not exposed via A like they would be in inheritance)


✦Subtyping 
A is not a special case of B so it cannot be accidentally used as a special 
kind of B.  (Does not violate LSP, because it does not apply)

10

Design Patterns

• In object-oriented development, Design Patterns are solutions 
that developers have refined over time to solve a range of recurring 
design problems.


• A design pattern has four elements

✦A name that uniquely identifies the pattern from other patterns.

✦A problem description that describes the situation in which the pattern 

can be used. 

✦A solution stated as a set of collaborating classes and interfaces.

✦A set of consequences that describes the trade-offs and alternatives to 

be considered with respect to the design goals being addressed.

11

Design Patterns

• The following terms are used to denote the classes that collaborate 
in a design pattern:

✦The client class accesses the pattern classes.

✦The pattern interface is the part of the pattern that is visible to the client 

class (might be an interface or abstract class).

✦The implementor class provides low level behavior of the pattern.  Often 

the pattern contains many of these.

✦The extender class specializes an implementor class to provide different 

implementation of the pattern.  These usually represent future classes 
anticipated by the developer.


• Common tradeoff: Simple architecture vs extensibility

✦ Agile methods: use refactoring to adopt patterns when need arises  

(not anticipating change like the book describes).
12



Name: Adapter Design Pattern 
Problem Description: Convert the interface of a legacy class into a different 
interface expected by the client, so they can work together without changes.  
Solution: Adapter class implements the Target interface expected by the 
client. The Adapter delegates requests from the client to the Adaptee (the pre-
existing legacy class) and performs any necessary conversion.

8.4.2 Encapsulating Legacy Components with the 
Adapter Pattern

13

• Goal: use Array.sort to sort an array of MyString  (MyString [])

✦Array.sort method expects an array (Object []) and a Comparator

✦Comparator has a compare(Object,Object):int method

✦MyString defines greaterThan() and equals() methods

✦MyStringComparator defines a compare method in terms of these methods 

in MyString via delegation


Example: Sorting Strings in a java Array

14

preexisting classes

Adapter Pattern example: Sorting strings

15

package mine;
// Existing Target interface
interface Comparator {

int compare (Object o1, Object o2);
}
// Existing Client
class Array {

public static void sort (Object [] a, Comparator c) {
//implementation hidden

}
}
// Existing Adaptee class (legacy)
class MyString  {

String s;
public MyString(String x) 

   { s = x; }
public boolean equals (Mystring s1) 

   { // implementation hidden }
boolean greaterThan (MyString s1) 

   { // implementation hidden }
}

Adapter Pattern example: Sorting strings

16

// New Adapter class
class MyStringComparator implements Comparator {

public int compare(Object o1, Object o2) {
int result;
if (((MyString) o1).greaterThan((MyString)o2)) {

result = 1;
} else if (((MyString) o1).equals((MyString)o2)) {

result = 0;
} else

result = -1;
return result;

}
}
public class AdapterPattern {

public static void main(String[] args) {
      MyString[] x =  { new MyString ("B"),new MyString ("A") };
      MyStringComparator c = new MyStringComparator();
      Array.sort ( x,c ) ;

}   
}



• Client and Adaptee work together without any modification to 
either.


• Adapter works with Adaptee and all of its sub classes

• A new Adapter needs to be written for each specialization 

(extension) of the Target interface.


• Question: Where does the Adapter Pattern use inheritance?   
Where does it use delegation?


Adapter Pattern: consequences

17

Name: Strategy Design Pattern 
Problem Description: Define a family of algorithms, encapsulate each one, and 
make them interchangeable.  The algorithm is decoupled from the client. 
Solution: A Client accesses services provided by a Context. The Context is 
configured to use one of the ConcreteStrategy objects (and maintains a reference 
to it) . The AbstractStrategy class describes the interface that is common to all 
the ConcreteStrategies.  

8.4.3 Encapsulating Context with the  
Strategy Pattern

18

Client

Policy

• Based on location (available network connections), switch between 
different types of network connections

✦LocationManager configures NetworkConnection with a concrete 

NetworkInterface based on the current location

✦Application uses the NetworkConnection independently of concrete 

NetworkInterfaces (NetworkConnection uses delegation).


Example: switching between network protocols

19

NetworkInterface 

open() 
close() 
send() 
receive() 

NetworkConnection 

send() 
receive() 
setNetworkInterface() LocationManager 

Application 

Ethernet 

open() 
close() 
send() 
receive() 

WaveLAN 

open() 
close() 
send() 
receive() 

UMTS 

open() 
close() 
send() 
receive() 

WaveLAN = WiFi 
UMTS = 3G mobile  

phone network

Strategy Pattern example: Network protocols

20

// Context Object: Network Connection
public class NetworkConnection {
   private String destination;
   private NetworkInterface intf;
   private StringBuffer queue;

   public NetworkConnect(String destination, NetworkInterface intf) {
      this.destination = destination;  this.intf = intf;
      this.intf.open(destination);
   }
   public void send(byte msg[]) {
      queue.concat(msg);
      if (intf.isReady()) {
         intf.send(queue);
         queue.setLength(0);
      }
   }
   public byte[] receive () { 
      return intf.receive();
   }
   public void setNetworkInterface(NetworkInterface newIntf) {
      intf.close()
      newIntf.open(destination);
      intf = newIntf;
}  } 



Strategy Pattern example: Network protocols

21

//Abstract Strategy,
//Implemented by EthernetNetwork, WaveLanNetwork, and UMTSNetwork (not shown)
interface NetworkInterface {
   void open(String destination);
   void close();
   byte[] receive();
   void send(StringBuffer queue);
   bool isReady();
}
//LocationManager: decides on which strategy to use
public class LocationManager {
   private NetworkConnection networkConn;
   
   // called by event handler when location has changed
   public void doLocation() {
      NetworkInterface networkIntf;
      if (isEthernetAvailable()) 
         networkIntf = new EthernetNetwork();
      else if (isWaveLANAvailable()) 
         networkIntf = new WaveLanNetwork();
      else if (isUMTSAvailable()) 
         networkIntf = new UMTSNetwork();
      networkConn.setNetworkInterface(networkIntf);
   }
}

• ConcreteStrategies can be substituted transparently from Context.

• Client (or Policy) decides which Strategy is best, given current 

circumstances

• New algorithms can be added without modifying Context or Client


Strategy Pattern: consequences

22

Name: Observer Design Pattern 
Problem Description: Maintain consistency across the states of one Subject and 
many Observers. 

A.7 Decoupling Entities from Views with the 
Observer Pattern

23

Solution: The Subject maintains 
some state.  One or more 
Observers use the state 
maintained by the Subject.  
Observers invoke the attach() 
method to register with a Subject.  
Each ConcreteObserver defines 
an update() method to 
synchronize its state with the 
Subject.  Whenever the state of 
the Subject changes, it invokes its 
notify method, which iteratively 
invokes each Observer.update() 
method.

• We could implement the Observer pattern “from scratch” in Java. 
But Java provides the Observable/Observer classes as built-in 
support for the Observer pattern.


• The java.util.Observer interface is the Observer interface. It must be 
implemented by any observer class.  It has one method.

- void update (Observable o, Object arg) 

This method is called whenever the observed object is changed.  
Observable o is the observed object. 
Object arg, if not null, is some value sent by the observed object.


Observer Pattern: Java support

24



• The java.util.Observable class is the base Subject class. Any class 
that wants to be observed extends this class.

- public synchronized void addObserver(Observer o)  

Adds an observer to the set of observers of this object


- boolean hasChanged() (see below)

- protected void setChanged() 

Indicates this object has changed (hasChanged now returns true)


- public void notifyObservers(Object arg)  

- public void notifyObservers() 

IF hasChanged(), THEN notify all of its observers. Each observer 
has its update() method called with this Observable object (and an 
argument). The argument can be used to indicate which attribute 
of this object has changed.  (hasChanged now returns false).

Observer Pattern: Java support

25

Observer Pattern example:

26

import java.util.Observable;

/* A subject to observe! */
public class ConcreteSubject extends Observable {
   private String name;
   private float price;
   public ConcreteSubject(String name, float price) {
       this.name = name;
       this.price = price;
       System.out.println("ConcreteSubject created: " + name + " at " + price);
   }
   public String getName() {return name;}
   public float getPrice() {return price;}
   public void setName(String name) {
        this.name = name;
        setChanged();
        notifyObservers(name);
   }
   public void setPrice(float price) {
       this.price = price;
       setChanged();
       notifyObservers(new Float(price));
   }
}

Observer Pattern example:

27

import java.util.Observable;
import java.util.Observer;

//An observer of name changes.
public class NameObserver implements Observer {

private String name;

public NameObserver() {
name = null;
System.out.println("NameObserver created: Name is " + name);

}

public void update(Observable obj, Object arg) {
if (arg instanceof String) {

name = (String) arg;
System.out.println("NameObserver: Name changed to " + name);

} else {
System.out.println("NameObserver: Some other change to subject!");

}
}

}

Observer Pattern example:

28

import java.util.Observable;
import java.util.Observer;

//An observer of price changes.
public class PriceObserver implements Observer {

private float price;

public PriceObserver() {
price = 0;
System.out.println("PriceObserver created: Price is " + price);

}

public void update(Observable obj, Object arg) {
if (arg instanceof Float) {

        //OR: if ((ConcreteSubject)obj.getPrice()!= price)
price = ((Float) arg).floatValue();   

            //OR: price = (ConcreteSubject)obj.getPrice();
System.out.println("PriceObserver: Price changed to " + price);

} else {
System.out.println("PriceObserver: Some other change to subject!");

}
}

}



Observer Pattern example:

29

//Test program for ConcreteSubject, NameObserver and PriceObserver
public class TestObservers {
  public static void main(String args[]) {
  // Create the Subject and Observers.

ConcreteSubject s = new ConcreteSubject("Corn Pops", 1.29f);
NameObserver nameObs = new NameObserver();
PriceObserver priceObs = new PriceObserver();
// Add those Observers!
s.addObserver(nameObs);
s.addObserver(priceObs);
// Make changes to the Subject.
s.setName("Frosted Flakes");
s.setPrice(4.57f);
s.setPrice(9.22f);
s.setName("Sugar Crispies");

  }
}

ConcreteSubject created: Corn Pops at 1.29
NameObserver created: Name is null
PriceObserver created: Price is 0.0
PriceObserver: Some other change to subject!
NameObserver: Name changed to Frosted Flakes
PriceObserver: Price changed to 4.57
NameObserver: Some other change to subject!
PriceObserver: Price changed to 9.22
NameObserver: Some other change to subject!
PriceObserver: Some other change to subject!
NameObserver: Name changed to Sugar Crispies

• Decouples a Subject from the Observers.  Subject knows only that 
it contains a list of Observers, each with an update() method.   
(The subject and observers can belong to different layers.) 


• Observers can change or be added without changing Subject.

• Observers can ignore notifications (decision is not made by 

Subject).

• Can result in many spurious broadcasts (and calls to getState()) 

when the state of a Subject changes.


Observer Pattern: consequences

30


