
Chapter 8:
Object design: Reusing Pattern Solutions (Part II)

CS 4354

Summer II 2015

Jill Seaman

1

Name: Abstract Factory Design Pattern 
Problem Description: Shield the client from different platforms that provide
different implementations for the same set of concepts. 
 
Solution:  
A platform is represented as a set of AbstractProducts, each representing a
concept (class) that is supported by all platforms.  
An AbstractFactory class declares the operations for creating each individual
product.  
A specific platform is then realized by a ConcreteFactory and a set of
ConcreteProducts (one for each AbstractProduct).  
 A ConcreteFactory depends only on its related ConcreteProducts.  
 
The Client depends only on the AbstractProducts and the AbstractFactory
classes, making it easy to substitute platforms.

8.4.4 Encapsulating Platforms with the
Abstract Factory Pattern

2

The Abstract Factory Pattern (solution diagram)

3

AbstractProductA!

ProductA1! ProductA2!

AbstractProductB!

ProductB1! ProductB2!

AbstractFactory!
!

CreateProductA!
CreateProductB!

Client!

 !
!

CreateProductA!
CreateProductB!

ConcreteFactory1!

 !
!

CreateProductA!
CreateProductB!

ConcreteFactory2!

• Devices from the two manufacturers (EIB and Luxmate) are NOT
interoperable.

Example:
A Facility Management System for a House

4

LightBulb

EIBBulb LuxmateBulb

Blind

EIBBlind LuxmateBlind

IntelligentHouse HouseFactory

createBulb()
createBlind()

LuxmateFactory EIBFactory

createBulb()
createBlind()

createBulb()
createBlind()

Abstract Factory Pattern example: IntelligentHouse

5

abstract class HouseFactory {
 public static HouseFactory getFactory() {
 int man = readFromConfigFile("MANUFACTURER_TYPE");
 if (man == 0)
 return new EIBFactory();
 else
 return new LuxmateFactory();
 }
 public abstract LightBulb createBulb();
 public abstract Blind createBlind();
}

class EIBFactory extends HouseFactory {
 public LightBulb createBulb() {
 return new EIBBulb();
 }
 public Blind createBlind() {
 return new EIBBlind();
 }
}

Abstract Factory Pattern example: IntelligentHouse

6

class LuxmateFactory extends HouseFactory {
 public LightBulb createBulb() {
 return new LuxmateBulb();
 }
 public Blind createBlind() {
 return new LuxmateBlind();
 }
}
//TBD: LightBulb, EIBBulb, LuxmateBulb
//TBD: Blind, EIBBlind, LuxmateBlind

// IntelligentHouse is not aware of EIB or Luxmate
public class IntelligentHouse {
 public static void main(String[] args) {
 HouseFactory factory = HouseFactory.getFactory();
 LightBulb bulb = factory.createBulb();
 bulb.switchOn();
 }
}

• Client is shielded from concrete product classes.

• Substituting families at runtime is possible

• Adding new families (platforms) is fairly easy.

• Adding new products is somewhat difficult since new realizations

for each factory must be created, AbstractFactory must be
changed.

- However, the AbstractProducts are not required to be Abstract. 

Some could be concrete and represent a default or generic
version of each product that can be used for any platform.

- You could add a new concrete product, and have the
AbstractFactory method create that one [so “new realizations for
each factory” can be deferred].

Abstract Factory Pattern: consequences

7

Name: Command Design Pattern 
Problem Description: Encapsulate requests as objects so that they can be
executed, undone, logged or queued independently of the request. 
Solution: A Command abstract class declares the interface for executing an
action. ConcreteCommands encapsulate an action carried out by a Receiver.
The Client creates ConcreteCommands and binds them to specific Receiver
actions. The Invoker executes a command, which delegates the execution to an
action of the Receiver. 

8.4.5 Encapsulating Control Flow with the
Command Pattern

8

Command

execute()

Receiver

action1()
action2()

Client

Invoker

ConcreteCommand1

execute()

«binds»

ConcreteCommand2

execute()

«binds»

Command Pattern: UI Menu

• MenuItem needs to issue messages to objects without knowing
anything about the method or the the object.

• When MenuItem is clicked, it will execute it’s command, without
knowing anything specific about the class or operation that is
triggered (Document.Open() perhaps).

9

Document will be the receiver.
Command subclasses will define Execute
to call a specific method on a document

Command Pattern example: Light switch

10

/* The Command interface */
public interface Command {
 void execute();
}

/* The Invoker class */
public class Switch {
 private List<Command> history = new ArrayList<Command>();
 public void storeAndExecute(Command cmd) {
 this.history.add(cmd); // optional
 cmd.execute();
 }
}

/* The Receiver class */
public class Light {
 public void turnOn() {
 System.out.println("The light is on");
 }
 public void turnOff() {
 System.out.println("The light is off");
 }
}

Command Pattern example: Light switch

11

/* The Command for turning on the light - ConcreteCommand #1 */
public class FlipUpCommand implements Command {
 private Light theLight;
 public FlipUpCommand(Light light) {
 this.theLight = light;
 }
 public void execute(){
 theLight.turnOn();
 }
}

/* The Command for turning off the light - ConcreteCommand #2 */
public class FlipDownCommand implements Command {
 private Light theLight;
 public FlipDownCommand(Light light) {
 this.theLight = light;
 }
 public void execute() {
 theLight.turnOff();
 }
}

Command Pattern example: Light switch

12

/* The test class or client */
public class PressSwitch {
 public static void main(String[] args){
 Light lamp = new Light();
 Command switchUp = new FlipUpCommand(lamp);
 Command switchDown = new FlipDownCommand(lamp);
 Switch s = new Switch();
 try {
 if (args[0].equalsIgnoreCase("ON")) {
 s.storeAndExecute(switchUp);
 }
 else if (args[0].equalsIgnoreCase("OFF")) {
 s.storeAndExecute(switchDown);
 }
 else
 System.out.println("Argument \"ON\" or \"OFF\" is required.");
 } catch (Exception e) {
 System.out.println("Arguments required.");
 }
 }
}

• The object of the command (Receiver) and the algorithm of the
command (ConcreteCommand) are decoupled.

• Invoker is shielded from specific commands.

• ConcreteCommands are objects. They can be created and stored.

• New ConcreteCommands can be added without changing existing

code.

• Question: Where does the Command Pattern use inheritance?
Where does it use delegation?

Command Pattern: consequences

13

Name: Composite Design Pattern 
Problem Description: Represent a hierarchy of variable width and depth so that
leaves and composites can be treated uniformly through a common interface. 
Solution: The Component interface specifies the services that are shared among
Leaf and Composite (operation()). A Composite has an aggregation association
with Components and implements each service by iterating over each contained
Component. The Leaf services do most of the actual work.

8.4.6 Encapsulating Hierarchies with the  
Composite Pattern

14

• Anatomy of a preference dialog. Aggregates, called Panels, are
used for grouping user interface objects that need to be resized and
moved together.

Example: A hierarchy of user interface objects

15

Top panel

Main panel

Button panel

• An object diagram (it contains instances, not classes) of the
previous example:

Example: A hierarchy of user interface objects

16

top:Panel

prefs:Window

ok:Button

main:Panel buttons:Panel

title:Label

c2:Checkbox

c3:Checkbox

c4:Checkbox

cancel:Button

c1:Checkbox

• A class diagram, for user interface widgets

Example: A hierarchy of user interface objects

17

Component
*

Checkbox Button Composite Label

Panel Window

Applet

move()
resize()

move()
resize()

Composite Pattern example: File system

18

//Component Node, common interface
interface AbstractFile {

public void ls();
}

// File implements the common interface, a Leaf
class File implements AbstractFile {

private String m_name;
public File(String name) {

m_name = name;
}
public void ls() {

System.out.println(CompositeDemo.g_indent + m_name);
}

}

Composite Pattern example: File system

19

// Directory implements the common interface, a composite
class Directory implements AbstractFile {

private String m_name;
private ArrayList<AbstractFile> m_files = new ArrayList<AbstractFile>();
public Directory(String name) {

m_name = name;
}
public void add(AbstractFile obj) {

m_files.add(obj);
}
public void ls() {

System.out.println(CompositeDemo.g_indent + m_name);
CompositeDemo.g_indent.append(“ “); // add 3 spaces
for (int i = 0; i < m_files.size(); ++i) {

AbstractFile obj = m_files.get(i);
obj.ls();

}
 //remove the 3 spaces:

CompositeDemo.g_indent.setLength(CompositeDemo.g_indent.length() - 3);
}

}

Composite Pattern example: File system

20

public class CompositeDemo {
public static StringBuffer g_indent = new StringBuffer();

public static void main(String[] args) {
Directory one = new Directory("dir111"),

 two = new Directory("dir222"),
 thr = new Directory("dir333");

File a = new File("a"), b = new File("b"),
 c = new File("c"), d = new File("d"), e = new File("e");

one.add(a);
one.add(two);
one.add(b);
two.add(c);
two.add(d);
two.add(thr);
thr.add(e);
one.ls();

}
}

dir111
 a
 dir222
 c
 d
 dir333
 e
 b

Output:

• Client uses the same code for dealing with Leaves or Composites

• Leaf-specific behavior can be modified without changing the

hierarchy

• New classes of leaves (and composites) can be added without

changing the hierarchy

• Could make your design too general. Sometimes you want
composites to have only certain components. May have to add
your own run-time checks.

Composite Pattern: consequences

21

Name: Proxy Design Pattern 
Problem Description: Improve the performance or security of a system by
delaying expensive computations, using memory only when needed, or checking
access before loading an object into memory. 
Solution: The Proxy class acts on behalf of a RealSubject class. Both classes
implement the same Subject interface. The Proxy stores a subset of the attributes
of the RealSubject. The Proxy handles certain requests completely, whereas
others are delegated to the RealSubject.  

A.8 Encapsulating Expensive Objects with the  
Proxy Pattern

22

• ImageProxy contains the filename of the image. Its reference to the
Image (content) can be null until the draw method is called. Then it
creates the Image object using the filename.

Example: Delayed loading of image content

23

Proxy Pattern example:

24

public interface Graphic {

 // a method used to draw the image
 public void draw();
}

public class Image implements Graphic {

 private byte[] data;

 public Image(String filename) {
 // Load the image
 data = loadImage(filename);
 }

 public void draw() {
 // Draw the image
 drawToScreen(data);
 }
}

Proxy Pattern example:

25

public class ImageProxy implements Graphic {

 // Variables to hold the concrete image
 private String filename;
 private Image content;

 public ImageProxy(String filename) {
 this.filename = filename;
 content = null;
 }

 // on a draw-request, load the concrete image
 // if we haven't done it yet.
 public void draw() {
 if (content == null) {
 content = new Image(filename);
 }
 // Forward to the Concrete image.
 content.draw();
 }
}

• Adds a level of indirection between Client and RealSubject

‣ Can hide the fact that an object is not stored locally

‣ Can create a complete object on demand

‣ Can make sure caller has access permissions before performing

request.

• Note the use of delegation

Proxy Pattern: consequences

26

Name: Facade Design Pattern  
Problem Description: Reduce coupling between a set of related classes and the
rest of the system. Provide a simple interface to a complex subsystem. 

A.6 Encapsulating Subsystems with the
Facade Pattern

27

Solution: A single
Facade class
implements a high-level
interface for a
subsystem by invoking
the methods of lower-
level classes. A Facade
is opaque in the sense
that a caller does not
access the lower-level
classes directly. The use
of Facade patterns
recursively yields a
layered system.

• Compiler class is a facade hiding the Scanner, Parser,
ProgramNodeBuilder and CodeGenerator.

Example: Compiler subsystem

28

Some specialized apps might
need to access the classes
directly, but most don’t.

• Shields a client from the low-level classes of a subsystem.

• Simplifies the use of a subsystem by providing higher-level

methods.

• Promotes “looser” coupling between subsystems.

• Note the use of delegation to reduce coupling.

Facade Pattern: consequences

29

• Use key phrases from design goals to help choose pattern

Heuristics for Selecting Design Patterns

30

Phrase Design Pattern

“Manufacturer independence”

“Platform independence”

Abstract
Factory

“Must comply with existing interface”

“Must reuse existing legacy component” Adapter

“Must be notified of changes” Observer
“All commands should be undoable”

“All transactions should be logged” Command

“Must support aggregate structures”

“Must allow for hierarchies of variable depth and width” Composite

“Policy and mechanisms should be decoupled”

“Must allow different algorithms to be interchanged at
runtime”

Strategy

• An application framework is a reusable partial application that can
be specialized to produce custom applications.

• They are targeted to particular technologies, such as data
processing, cellular communications, or user interfaces.

‣ Java Swing, Mac OSX Cocoa (AppKit) or IOS UIKit.

• They provide reusability and extensibility.

‣Whitebox frameworks rely on inheritance and dynamic binding

for extensibility. Developers subclass framework base classes and
override predefined methods.

‣ Blackbox frameworks support extensibility by defining interfaces

for components that can be plugged into the framework.
Developers create components that implement the interface.

Reuse activity:
Identifying off-the-shelf components

31

• Frameworks focus on reuse of concrete designs, algorithms, and
implementations

• Design Patterns focus on reuse of abstract designs and small
collections of cooperating classes.

• Class Libraries are less domain specific than frameworks and
provide a smaller scope of reuse

‣ examples: classes for strings, complex numbers, collections, and

maps. These can be used across many domains.

• Components are self contained instances of classes that are

plugged together to form complete applications.

Framework vs Class Libraries vs design patterns

32

