Object-Oriented Software Development:
Requirements elicitation (ch. 4) and analysis (ch. 5)

CS 4354
Summer Il 2015

Jill Seaman

Progress Report

+ So far we have learned about the tools used in object-oriented
design and implementation

+Java programming language

4UML Models

+ Next we will learn how to use them in the Object-oriented software
development process.

4+How to analyze a problem, design a solution using models, and implement
it as a Java program.

Object-oriented analysis, design, implementation

+ Object-oriented analysis: finding and describing the objects (or
concepts) in the problem domain.

* Object-oriented design: defining software objects and how they
collaborate to fulfill the requirements.

* Object-oriented implementation: implementing the designs in an
object-oriented language such as Java or C++.

Object-oriented software development

* During requirements elicitation, the client and developers define
the purpose (functionality) of the system. (Develop use cases)

* During analysis, developers aim to produce an application domain
model that is correct, complete, consistent, and unambiguous.

* During system design, developers define the design goals of the
project and decompose the system into smaller subsystems.

* During object design, developers define solution domain objects
to bridge the gap between the analysis model and the hardware/
software platform defined during system design.

* During implementation, developers translate the solution domain
model into source code.

* During testing, developers find differences between the system
and its models by executing the system with sample input data.

A note about analysis and design

+ Analysis and (especially) Design are creative processes.
+ There is no formulaic process for them.

+ A creative process is a series of decisions to be made, rather than
a sequence of activities.

* In order to be successful, you need to know what decisions need
to be made. You need to know what questions to ask.

+ Some answers will be better than others. Determining which ones
are best depends on experience and a clear understanding of the
problem(s).

Ch 4: Requirements Elicitation

 During requirements elicitation, the client and developers define
the purpose of the system.

+ The result of this phase is a Requirements Specification.
4+Written in natural language

+ The Requirements Specification contains
+Nonfunctional Requirements
4+Functional Requirements (or Functional Model)

- In object oriented development, this will be represented by
use cases and scenarios

Requirements Elicitation Activities

* ldentifying actors.

+ ldentifying scenarios (specific stories).

+ Identifying use cases (generalized interactions).
+ Refining use cases.

+ ldentifying relationships among use cases.

+ (Identifying nonfunctional requirements).

’Note: the book has good examples for each of these activities

|dentifying actors

* ldentifying actors:
+all external entities that interact with the system
4+humans (roles) or systems (software, databases)
+defines system boundaries

+defines perspectives from which analysts need to consider the system

Questions for identifying actors:

*Which user groups are supported by the system to perform their work?
*Which user groups execute the system’s main functions?

*Which user groups perform secondary functions (maintenance/admin)?
*With what external hardware of software system will the system interact?

|dentifying scenarios

* |dentifying scenarios:

+a narrative description of what people do and experience as they try to
make use of the system

4+a specific instance of concrete events

4understandable to users and customers

Questions for identifying scenarios:

*What are the tasks that the actor wants the system to perform?

*What information does the actor access? Who creates that data? Can it
be modified or removed? by whom?

*Which external changes does the actor need to inform the system about?

*Which events does the system need to inform the actor about?

|dentifying use cases

* Identifying use cases:
+specifies all possible scenarios for a given piece of functionality
4+generalizes scenarios, describes a flow of events

+attach to the initiating actor

Guidelines for writing use cases:

*Name with a verb phrase (ReportEmergency).

* Steps in the flow of events should be phrased in the active voice, so it is
clear who does what.

* The boundary should be clear, what the system does, what actors do.

¢ Causal relationship between successive steps should be clear.

Refining use cases,
|dentifying relationships among use cases, actors

+ Refining use cases:
4+Rewriting, adding missing cases, dropping unneeded ones
4 Add more details, constraints
4+Describe exceptional cases
4+Factor out common functionality
+ Identifying relationships:
+start drawing use case diagrams with actors/ellipses for use cases
+use different kinds of relationships: inheritance, extend, include

4For each actor involved in a use case, indicate if that actor initiates or
participates in the interaction.

Chapter 5: Analysis
Products of Requirements Elicitation and Analysis

’Products of Requirements EIicitation‘

* Requirements specification: ynderstood by users/customer
4+nonfunctional requirements
4+functional model (functional requirements)

- represented by use cases and scenarios

Products of Analysis
» Analysis model:

Understood by developers

+functional model (use cases developed in requirements elicitation)
+analysis object model (class diagram of domain concepts)

+dynamic model (state machine and sequence diagrams)

Analysis Activities: From Use Cases to Objects

* The activities that transform the use cases and scenarios produced
during requirements elicitation into an analysis model (class diagram).

+ldentifying Entity Objects, Boundary Objects, Control Objects
+ldentifying Associations, Aggregations, Attributes

+Modeling Inheritance Relationships

+Mapping Use Cases to Objects with Sequence Diagrams
+Modeling State-Dependent Behavior of Individual Objects
+Reviewing the Analysis Model

|dentifying entity objects

+ Entity objects represent the information tracked by the system.
4+Year, Month, and Day (for the 2 button watch)

+ ldentifying entity objects
4+find the actors that participate in the use case
4+as objects are found, record their names, attributes, and responsibilities

4+use names used by the user/customer/domain specialists

Heuristics for identifying entity objects

* Terms that developers or users need to clarify in order to understand the
use case.

*Recurring nouns in the use case.

* Real-world entities that the system needs to track.

*Real-world activities that the system needs to track.

*Data sources or sinks (e.g., Printer, Database)

|dentifying boundary objects

* Boundary objects represent the interface between the actors and
the system.

4+Button, LCDDisplay, forms, error messages, window

+ |Identifying boundary objects
4+in each use case, each actor interacts with at least one boundary object
+boundary object collects info from actor, displays info to actor

+translates information between entity and control objects

Heuristics for identifying boundary objects

* Basic user interface controls needed to initiate the use case. (Button)
*Forms the users need to enter data into the system (EmergencyReportForm).
*Notices and messages the system uses to respond to the user

* Do not model the visual details of the user interface with boundary objects

|dentifying control objects

+ Control objects are in charge of realizing use cases.

+ChangeDateControl represents activity of changing the date by pressing
combinations of buttons

+ Identifying control objects
+coordinate boundary and entity objects
4+do not have concrete counterpart in the real world

4+ collects information from boundary objects and dispatches to entity
objects

Heuristics for identifying control objects

* |dentify one control object per use case.

* Identify one control object per actor in the use case.

* The life span of a control object should cover the extent of the use case
or the extent of a user session.

|dentifying attributes

* Attributes:
+properties of individual objects
4+note names and data types of each

+properties represented by objects are NOT attributes (ie Address)

Heuristics for identifying attributes

* Examine possessive phrases (of <an object>)

*Represent stored state as an attribute of the entity object.

*Describe each attribute.

* Do not waste time describing fine details before the object structure is
stable.

|dentifying associations

+ Associations:
+show relationship between two or more classes

4+name, multiplicity, roles

Heuristics for identifying associations

* Examine verb phrases.

*Name associations and roles precisely.

¢ Eliminate any association that can be derived from other associations.
* Do not worry about multiplicity until the set of associations is stable.

* Too many associations make a model unreadable.

|dentifying aggregates, Identifying Inheritance

+ Aggregations:
+denote whole-part relationships

4+composition, special case of aggregation, when the existence of the parts
depend on the existence of the whole.

* Inheritance:

+Generalization is used to eliminate redundancy from the analysis model.
(put shared attributes and behavior in superclass).

Mapping use cases to objects with sequence
diagrams

+ Sequence diagrams

+show how behavior of a use case is distributed among participating
objects

+allow developers to find missing objects and clarify behavior

4+assigns responsibilities to each object as a set of operations
(identifies the operations: See GRASP lecture!!)

Heuristics for drawing sequence diagrams

*The second column should be a boundary object (that the actor used to
initiate the use case).

* The third column should be the control object that manages the rest of the
use case.

* Control objects are created by boundary objects initiating use cases.

* Secondary boundary objects are created by control objects.

¢ Entity objects are accessed by control and boundary objects.

* The first column should correspond to the actor who initiated the use case.

20

Sequence diagram for ReportEmergency use case

X

Report
EmergencyButton

press()

jcreate»

Part 1 only

ReportEmergency
Control

«create» ReportEmergency
Form
fillContents) |

—
I

| submit()

! submitReport) |

«create»

Manage
EmergencyControl

Emergency

Report
T

«destroy»

submilReportTol:‘ispatcher()

N e

21

Modeling State-Dependent Behavior of Individual
Objects

+ State machine diagrams:
+represent behavior of the system from the perspective of a single object.
+helps identify missing use cases, new behavior

+not necessary to build for each object in model (often for control objects).

22

Reviewing the Analysis model

+ Analysis model is built incrementally and iteratively.

* Reviewed by developers, then jointly with the customer.

+ Certain questions should be asked to ensure the model is correct,

complete, consistent, realistic.

+Are all entity objects understandable to the user?

4+For each object: Is it needed by some use case? In which use case is it
created? modified? destroyed?

+Are there multiple classes with the same name?

+Are there any novel features in the system, that the developers have never
experienced before?

23

