
Object-Oriented Software Development:
Requirements elicitation (ch. 4) and analysis (ch. 5)

CS 4354

Summer II 2015

Jill Seaman

1

Progress Report

• So far we have learned about the tools used in object-oriented
design and implementation

✦Java programming language

✦UML Models

• Next we will learn how to use them in the Object-oriented software
development process.

✦How to analyze a problem, design a solution using models, and implement

it as a Java program.

2

Object-oriented analysis, design, implementation

• Object-oriented analysis: finding and describing the objects (or
concepts) in the problem domain.

• Object-oriented design: defining software objects and how they
collaborate to fulfill the requirements.

• Object-oriented implementation: implementing the designs in an
object-oriented language such as Java or C++.

3

Object-oriented software development

• During requirements elicitation, the client and developers define
the purpose (functionality) of the system. (Develop use cases)

• During analysis, developers aim to produce an application domain
model that is correct, complete, consistent, and unambiguous.

• During system design, developers define the design goals of the
project and decompose the system into smaller subsystems.

• During object design, developers define solution domain objects
to bridge the gap between the analysis model and the hardware/
software platform defined during system design.

• During implementation, developers translate the solution domain
model into source code.

• During testing, developers find differences between the system
and its models by executing the system with sample input data.

4

A note about analysis and design

• Analysis and (especially) Design are creative processes.

• There is no formulaic process for them.

• A creative process is a series of decisions to be made, rather than

a sequence of activities.

• In order to be successful, you need to know what decisions need

to be made. You need to know what questions to ask.

• Some answers will be better than others. Determining which ones
are best depends on experience and a clear understanding of the
problem(s).

5

Ch 4: Requirements Elicitation

• During requirements elicitation, the client and developers define
the purpose of the system.

• The result of this phase is a Requirements Specification.

✦Written in natural language

• The Requirements Specification contains

✦Nonfunctional Requirements

✦Functional Requirements (or Functional Model)

- In object oriented development, this will be represented by  
use cases and scenarios

6

Requirements Elicitation Activities

• Identifying actors.

• Identifying scenarios (specific stories).

• Identifying use cases (generalized interactions).

• Refining use cases.

• Identifying relationships among use cases.

• (Identifying nonfunctional requirements).

7

Note: the book has good examples for each of these activities

Identifying actors

• Identifying actors:

✦all external entities that interact with the system

✦humans (roles) or systems (software, databases)

✦defines system boundaries

✦defines perspectives from which analysts need to consider the system

8

Questions for identifying actors:
•Which user groups are supported by the system to perform their work?
•Which user groups execute the system’s main functions?
•Which user groups perform secondary functions (maintenance/admin)?
•With what external hardware of software system will the system interact?

Identifying scenarios

• Identifying scenarios:

✦a narrative description of what people do and experience as they try to

make use of the system

✦a specific instance of concrete events

✦understandable to users and customers

9

Questions for identifying scenarios:
•What are the tasks that the actor wants the system to perform?
•What information does the actor access? Who creates that data? Can it

be modified or removed? by whom?
•Which external changes does the actor need to inform the system about?
•Which events does the system need to inform the actor about?

Identifying use cases

• Identifying use cases:

✦specifies all possible scenarios for a given piece of functionality

✦generalizes scenarios, describes a flow of events

✦attach to the initiating actor

10

Guidelines for writing use cases:
•Name with a verb phrase (ReportEmergency).
•Steps in the flow of events should be phrased in the active voice, so it is

clear who does what.
•The boundary should be clear, what the system does, what actors do.
•Causal relationship between successive steps should be clear.

Refining use cases,
Identifying relationships among use cases, actors

• Refining use cases:

✦Rewriting, adding missing cases, dropping unneeded ones

✦Add more details, constraints

✦Describe exceptional cases

✦Factor out common functionality

• Identifying relationships:

✦start drawing use case diagrams with actors/ellipses for use cases

✦use different kinds of relationships: inheritance, extend, include

✦For each actor involved in a use case, indicate if that actor initiates or

participates in the interaction.

11

Chapter 5: Analysis
Products of Requirements Elicitation and Analysis

• Requirements specification:

✦nonfunctional requirements

✦functional model (functional requirements)

- represented by use cases and scenarios

• Analysis model:

✦functional model (use cases developed in requirements elicitation)

✦analysis object model (class diagram of domain concepts)

✦dynamic model (state machine and sequence diagrams)

12

Products of Requirements Elicitation

Products of Analysis

Understood by users/customer

Understood by developers

Analysis Activities: From Use Cases to Objects

• The activities that transform the use cases and scenarios produced
during requirements elicitation into an analysis model (class diagram).
✦Identifying Entity Objects, Boundary Objects, Control Objects

✦Identifying Associations, Aggregations, Attributes

✦Modeling Inheritance Relationships

✦Mapping Use Cases to Objects with Sequence Diagrams

✦Modeling State-Dependent Behavior of Individual Objects

✦Reviewing the Analysis Model

13

Identifying entity objects

• Entity objects represent the information tracked by the system.

✦Year, Month, and Day (for the 2 button watch)

• Identifying entity objects

✦find the actors that participate in the use case

✦as objects are found, record their names, attributes, and responsibilities

✦use names used by the user/customer/domain specialists

14

Heuristics for identifying entity objects
•Terms that developers or users need to clarify in order to understand the

use case.
•Recurring nouns in the use case.
•Real-world entities that the system needs to track.
•Real-world activities that the system needs to track.
•Data sources or sinks (e.g., Printer, Database)

Identifying boundary objects

• Boundary objects represent the interface between the actors and
the system.

✦Button, LCDDisplay, forms, error messages, window

• Identifying boundary objects

✦in each use case, each actor interacts with at least one boundary object

✦boundary object collects info from actor, displays info to actor

✦translates information between entity and control objects

15

Heuristics for identifying boundary objects
•Basic user interface controls needed to initiate the use case. (Button)
•Forms the users need to enter data into the system (EmergencyReportForm).
•Notices and messages the system uses to respond to the user
•Do not model the visual details of the user interface with boundary objects

Identifying control objects

• Control objects are in charge of realizing use cases.

✦ChangeDateControl represents activity of changing the date by pressing

combinations of buttons

• Identifying control objects

✦coordinate boundary and entity objects

✦do not have concrete counterpart in the real world

✦collects information from boundary objects and dispatches to entity

objects

16

Heuristics for identifying control objects
• Identify one control object per use case.
• Identify one control object per actor in the use case.
•The life span of a control object should cover the extent of the use case

or the extent of a user session.

Identifying attributes

• Attributes:

✦properties of individual objects

✦note names and data types of each

✦properties represented by objects are NOT attributes (ie Address)

17

Heuristics for identifying attributes
•Examine possessive phrases (______ of <an object>)
•Represent stored state as an attribute of the entity object.
•Describe each attribute.
•Do not waste time describing fine details before the object structure is

stable.

Identifying associations

• Associations:

✦show relationship between two or more classes

✦name, multiplicity, roles

18

Heuristics for identifying associations
•Examine verb phrases.
•Name associations and roles precisely.
•Eliminate any association that can be derived from other associations.
•Do not worry about multiplicity until the set of associations is stable.
•Too many associations make a model unreadable.

Identifying aggregates, Identifying Inheritance

• Aggregations:

✦denote whole-part relationships

✦composition, special case of aggregation, when the existence of the parts

depend on the existence of the whole.

• Inheritance:

✦Generalization is used to eliminate redundancy from the analysis model. 

(put shared attributes and behavior in superclass).

19

Mapping use cases to objects with sequence
diagrams

• Sequence diagrams

✦show how behavior of a use case is distributed among participating

objects

✦allow developers to find missing objects and clarify behavior

✦assigns responsibilities to each object as a set of operations  

(identifies the operations: See GRASP lecture!!)

20

Heuristics for drawing sequence diagrams
•The first column should correspond to the actor who initiated the use case.
•The second column should be a boundary object (that the actor used to

initiate the use case).
•The third column should be the control object that manages the rest of the

use case.
•Control objects are created by boundary objects initiating use cases.
•Secondary boundary objects are created by control objects.
•Entity objects are accessed by control and boundary objects.

Sequence diagram for ReportEmergency use case

21

 Report!
EmergencyButton!

ReportEmergency "
Control!

 ReportEmergency!
Form!

 Emergency!
Report!

 Manage!
EmergencyControl!

press()!

«create»!

«create»!

submit()!
fillContents()!

submitReport()!

submitReportToDispatcher()!

«create»!

«destroy»!

Part 1 only

Modeling State-Dependent Behavior of Individual
Objects

• State machine diagrams:

✦represent behavior of the system from the perspective of a single object.

✦helps identify missing use cases, new behavior

✦not necessary to build for each object in model (often for control objects).

22

Reviewing the Analysis model

• Analysis model is built incrementally and iteratively.

• Reviewed by developers, then jointly with the customer.

• Certain questions should be asked to ensure the model is correct,

complete, consistent, realistic.

✦Are all entity objects understandable to the user?

✦For each object: Is it needed by some use case? In which use case is it

created? modified? destroyed?

✦Are there multiple classes with the same name?

✦Are there any novel features in the system, that the developers have never

experienced before?

23

