
Introduction to GRASP:
Assigning Responsibilities to Objects

CS 4354

Summer II 2015

Jill Seaman

1

Object Analysis & Design in the textbook

• Chapter 5 Analysis activities: from use cases to objects

✦Gives good guidelines for identifying and assigning the following:

- objects (classes)

- attributes

- associations, aggregations, inheritance relationships

- Good start to a class diagram representing the domain model

✦But what about operations?

- Sequence diagrams are good tools to explore interactions and

operations

- But little advice is given on how to decide who does what.

2

The design of behavior

• What methods go in what classes? How should objects interact?

✦These are critical questions in the design of behavior.

✦Poor answers lead to abysmal, fragile systems with low reuse and high

maintenance.

3

Responsibility-Driven Design

• Assigns responsibilities to classes

• Methods are implemented to fulfill responsibilities of the given

class.

• Methods may act alone or in collaboration to fulfill their obligations.

• Responsibilities of classes:

✦Knowing: about attributes, related classes, computed values

✦Doing: Calculating, coordinating, creating, controlling

• Responsibilities come from the use cases: If “the system does X”,
then what class is responsible for carrying out X?

4

GRASP Patterns

GRASP

• General Responsibility Assignment Software Patterns.

• These are well-known best principles for assigning responsibilities.

• Nine core principles that object-oriented designers apply when

assigning responsibilities to classes and designing message
interactions.

✦We will look at 5 of these 9 principles

• Can be applied during the creation of sequence diagrams, or even
during implementation.

• After or in tandem with developing the domain model.

5

Patterns

• Named description of a problem/solution pair that can be applied
in new contexts, with advice on how to apply it in novel situations,
and discussion of its trade-offs.

• Notable benefits of patterns:

✦ Simplifying: provides a named, generally understood building

block

- Facilitates communication

- Aids thinking about the design

✦ Accelerates learning to not have to develop concepts from
scratch

6

Pattern: Information Expert
• Problem: What is most basic, general principle of responsibility

assignment?

• Solution: Assign a responsibility to the object that has the

information necessary to fulfill it.

✦“That which has the information, does the work.”

• In a “Point of Sale” (think: cash register) application, who should be
responsible for knowing the grand total of a sale?

• By Information Expert we should look for that class that has the
information needed to determine the total.

7

POS domain model

• It is necessary to know
about all the
SalesLineItem
instances of a sale and
the sum of the
subtotals.

• A Sale instance
contains these, i.e. it is
an information expert
for this responsibility.

8

POS Information Expert

• This is a partial
interaction diagram.

• It’s a variation of a
sequence diagram.

9

POS Information Expert

• What information is needed
to determine the line item
subtotal?

- quantity and price.

• SalesLineItem should
determine the subtotal.

• This means that Sale needs
to send getSubtotal()
messages to each of the
SalesLineItems and sum
the results.

10

POS Information Expert

• To fulfill the responsibility
of knowing and answering
its subtotal, a
SalesLineItem needs to
know the product price.

• The ProductSpecification
is the information expert
on answering its price.

11

POS Information Expert

• To fulfill the responsibility of
knowing and answering the
sale’s total, three
responsibilities were
assigned to three design
classes

• The fulfillment of a
responsibility often requires
information that is spread
across different classes of
objects. This implies that
there are many “partial
experts” who will
collaborate in the task.

12

Pattern: Creator

• Problem: Who should be responsible for creating a new instance of
some class?

• Solution: Assign class B the responsibility to create an instance of
class A if one or more of the following is true:

✦B aggregates A objects.

✦B contains A objects.

✦B records instances of A objects.

✦B has the initializing data that will be passed to A when it is created (thus B

is an Expert with respect to creating A).

• The more, the better.

13

POS domain model

• In the POS
application, who
should be responsible
for creating a
SalesLineItem
instance?

• Since a Sale contains
many SalesLineItem
objects, the Creator
pattern suggests that
Sale is a good
candidate.

14

POS Creator

• This assignment of
responsibilities
requires that a
makeLineItem method
be defined in Sale.

15

Pattern: Low Coupling

• Coupling (in a class diagram) is a measure of how strongly one
class is connected to, has knowledge of, or relies on other classes.

• A class with high coupling depends on many other classes
(libraries, tools).

• Problems because of a design with high coupling:

✦Changes in related classes force local changes.

✦Harder to understand in isolation; need to understand other classes.

✦Harder to reuse because it requires additional presence of other classes.

• Problem: How to support low dependency, low change impact and
increased reuse?

• Solution: Assign a responsibility so that coupling remains low.

16

POS: Low Coupling

• Which class should be responsible for creating a Payment and
associating it with a sale?

17

: Register : Sale

addPayment(p)

p : Paymentcreate()
makePayment()

✦Since Register records a
payment (in real life), it could
be Register, by the Creator
pattern

✦Register could then send an
addPayment message to
Sale, passing along the new
Payment as a parameter.

✦This assignment of
responsibilities couples the
Register class to knowledge
of the Payment class.

POS: Low Coupling

• An alternative solution is to have the Sale object create the
Payment and associate it with the Sale.

• No coupling between Register and Payment.

18

: Register : Sale

makePayment()
 : Paymentcreate()

makePayment()

Pattern: High Cohesion

• Cohesion (in a class diagram) is a measure of how strongly related
and focused the responsibilities of a class are.

• A class with low cohesion does many unrelated activities or does
too much work.

• Problems because of a design with low cohesion:

✦ Hard to understand.

✦ Hard to reuse.

✦ Hard to maintain.

✦ Delicate, affected by change.

• Problem: How to keep complexity manageable?

• Solution: Assign a responsibility so that cohesion remains high.

19

POS High Cohesion
• Let’s compare the same two examples as before with respect to

cohesion:

20

: Register : Sale

addPayment(p)

p : Paymentcreate()
makePayment()

✦Since Register records a
payment (in real life), it could
be Register, by the Creator
pattern

✦Register could then send an
addPayment message to
Sale, passing along the new
Payment as a parameter.

✦Register may become
bloated if it is assigned more
and more system operations.

POS: High Cohesion

• An alternative design delegates the Payment creation responsibility
to the Sale, which supports higher cohesion in the Register.

• No class has too much work (good delegation).

• This design supports high cohesion and low coupling.

21

: Register : Sale

makePayment()
 : Paymentcreate()

makePayment()

Pattern: Controller
• What class should handle system event messages (such as input

from the user/user interface)?

• Solution: Choose a class whose name/job suggests:

✦The overall “system,” device, or subsystem

✦OR, represents the use case scenario or session

• Recall: during analysis,we identified three types of objects:

✦Entity Objects: persistent information tracked by system (domain objects)

✦Boundary Objects: represent the interface between the actors and the

system

✦Control Objects: are in charge of realizing use cases

• Recall: MVC architectural pattern: the Controller component

22

POS: Controller

• In this example, the Register object (a controller) handles the input
event.

23

actionPerformed(actionEvent)

:Register

: Cashier

:SaleJFrame

presses button

1: enterItem(itemID, qty)

:Sale1.1: makeLineItem(itemID, qty)

UI Layer

Domain Layer

system operation message

controller

POS: Controller

• In this example, SaleJFrame, a UI (boundary) object handles the
input event

24

Cashier

:SaleJFrame

actionPerformed(actionEvent)

:Sale
1: makeLineItem(itemID, qty)

UI Layer

Domain Layer

It is undesirable for an interface
layer object such as a window to get
involved in deciding how to handle
domain processes.

Business logic is embedded in the
presentation layer, which is not useful.

SaleJFrame should not
send this message.

presses buttonDon’t want the
UI objects tightly
coupled with the
entity objects
(Sale)

Summary of Introduction to GRASP
• 5 principles for deciding how to assign responsibility (behavior) to

classes:

✦Information Expert

✦Creator

✦Low Coupling

✦High Cohesion

✦Controller

• These decisions are made during analysis and/or object design.

• These decisions are made (initially) when designing the sequence

diagrams from the use cases (deciding which messages are
handled by which objects)

25

Example: Object-Oriented Analysis & GRASP
• This example is based on the Inventory system described in

Assignment 2.

• I will treat “Process Sale” as a use case for the Fulfillment
Specialist actor. (I’m not going to address any other use cases).

• Note: I am not going to consider “Boundary Objects”: I am going to
ignore the User Interface, and assume that the actor interacts
directly with the Controller Object.

26

Step 1: Use case for process sale

27

Use Case Name Process Sale

Participating
Actors

Initiated by Fulfillment Specialist

Flow of Events 1. The Fulfillment Specialist activates the “Process Sale” function.

2. The Fulfillment Specialist enters the following values: the sku of the sold

item, the quantity that were sold, and the cost to ship all of the items.

3. The system finds the Product with the given sku in the Inventory.

4. The system decreases the quantity of the Product by the given quantity

that were sold.

5. The system computes the total price, shipping credit, commission, and

profit, and outputs these values to the FulfillmentSpecialist.

Exceptional
Flow of Events

1. If there is no product in the inventory with the given sku, the System
outputs an error message and aborts the operation.

2. If the quantity of the Product in the inventory is not greater than the
quantity sold, the System outputs an error message and aborts the
operation.

Entry Condition The Fulfillment Specialist has started the system.

Exit Condition The Fulfillment Specialist has received the computed statistics, and the
quantity of the Product has been decreased by the quantity sold.

Step 2: Entity, boundary, and control objects
• Entity objects: 

• Boundary objects: Ignoring these for this assignment.  

• Control objects (Note we did not have this class in Assignment 2): 

28

Product The item that was sold

Inventory The list of Products sold by the company

ProcessSaleControl Manages the processSale reporting function. This
object will coordinate the work done by the system.

Step 3: Class diagram with attributes, associations

29

• The Product price is needed to compute the desired statistics

• The Product qty will be updated by the use case.

Step 4: Sequence diagram for process sale, v.1

30

• Forwards engineering (this is not like the code I wrote).

• Controller does all the work (low coherence, bad)

Step 4: Sequence diagram for process sale, v.2

31

• Now the Controller dispatches the work to Inventory and Product.

• The Product has all the information to compute the statistics, so

now it calculates the statistics (by Information Expert)

But what about

coupling?

Step 4: Sequence diagram for process sale, v.3

32

• Now the Controller dispatches the work to Inventory, who
delegates to the Product.

• Low coupling, high cohesion, and information expert is applied

Step 5: Add operations to class diagram

33

• searchList can be private now (and returns Product)

Explain GRASPatterns used
• Inventory.processSale(sku,qty,c): By high cohesion, Inventory

should be responsible to process the sale (so ProcessSaleControl
doesn’t have to do all of it).

• Product.processSale(qty,c): By information expert, Product has the
information needed to compute the statistics (and update the
quantity) so it will do that work.

• Inventory.processSale(sku,qty,c): By low coupling, Inventory should
find the product AND send the processSale message to it (so
ProcessSaleControl doesn’t have to talk to the Product). 

34

