
Java - Inheritance/Polymorphism/Interface

CS 4354

Summer II 2015

Jill Seaman

1

Reusing Classes in Java

• Composition

✦A new class is composed of object instances of existing classes.

✦Fields of one class contain objects from another.

✦Name class can be made up of three Strings (first, middle, last),  

Student class can contain a Name object and other Strings.

• Inheritance

✦Creates a new class as an extension to an existing class.

✦New class adds code to the existing class the without modifying it,

resulting in two classes (the original class and the extension).

✦All classes inherit from Java standard class java.lang.Object.

2

Simple Example of Composition

3

class WaterSource {
 private String s;
 WaterSource() {
 System.out.println("WaterSource()");
 s = new String("Constructed");
 }
}

public class SprinklerSystem {
 private String valve1, valve2, valve3, valve4;
 private WaterSource source;
 SprinklerSystem() {
 System.out.println("SprinklerSystem");
 valve1 = "v1";
 source = new WaterSource();
 }
}

Inheritance

• A way to reuse code from existing classes by extending an existing
class with new fields and methods

• Classes can inherit attributes and behavior from pre-existing
classes called base classes, superclasses, or parent classes. The
resulting classes are known as derived classes, subclasses or child
classes.

• The relationships of classes through inheritance gives rise to a
hierarchy.

• In Java, each class has exactly one superclass. If none are
specified, then java.lang.Object is the superclass.

• Note: In Java, constructors are NOT inherited.

4

Simple Example of Inheritance

5

class Cleanser {
 private String s = new String("Cleanser");
 public void append(String a) { s += a; }
 public void dilute() { append(" dilute()"); }
 public void apply() { append(" apply()"); }
 public void scrub() { append(" scrub()"); }
 public String toString() { return s; }

 public static void main(String[] args) {
 Cleanser x = new Cleanser();
 x.dilute(); x.apply(); x.scrub();
 System.out.println(x);
 }
}

Cleanser dilute() apply() scrub()

Output:

toString is a method 
of java.lang.Object

Simple Example of Inheritance

6

public class Detergent extends Cleanser {
 // Change (override) a method:
 public void scrub() {
 append(" Detergent.scrub()");
 super.scrub(); // Call base-class version
 }
 // Add methods to the interface:
 public void foam() { append(" foam()"); }
 // Test the new class:
 public static void main(String[] args) {
 Detergent x = new Detergent();
 x.dilute(); x.apply(); x.scrub(); x.foam();
 System.out.println(x);
 Cleanser.main(args);
 }
}

extends is used to

specify the base-class

Cleanser dilute() apply() Detergent.scrub() scrub() foam()
Cleanser dilute() apply() scrub()

Output:

General convention

• Fields are private

✦Not even subclasses should access these directly

• Methods are public

✦This is so other classes, including subclasses can access them.

• Overriding a method:

✦Writing a new instance method in the subclass that has the same signature

as the one in the superclass.

✦Any instance of the subclass will use the method from the subclass

✦Any instance of the superclass will use the method from the superclass

✦The subclass can call the superclass method using “super.method()”

7

Some things you can do in a subclass

• The inherited fields (from the superclass) can be used directly, just
like any other fields (unless they are private).

• You can declare a field in the subclass with the same name as the
one in the superclass, thus hiding it (not recommended).

• You can declare new fields in the subclass that are not in the
superclass.

• The inherited methods (from the superclass) can be used directly
(unless they are private).

• You can write a new instance method in the subclass that has the
same signature as the one in the superclass, thus overriding it.

• You can declare new methods in the subclass that are not in the
superclass.

8

Initialization

• Java automatically inserts calls to the (default) superclass
constructor at the beginning of the subclass constructor.

9

class Art {
 Art() {
 System.out.println("Art constructor");
 }
}
class Drawing extends Art {
 Drawing() {
 System.out.println("Drawing constructor");
 }
}
public class Cartoon extends Drawing {
 public Cartoon() {
 System.out.println("Cartoon constructor");
 }
 public static void main(String[] args) {
 Cartoon x = new Cartoon();
 }
}

Art constructor
Drawing constructor
Cartoon constructor

Output:

So constructors are not

inherited, they are called

from the constructors of

the subclass.

Initialization

• If your class doesn’t have default (no arg) constructors, or if you want to
call a superclass constructor that has an argument, you must explicitly
write the calls to the superclass constructor using the super keyword
and the appropriate argument list

10

class Game {
 Game(int i) {
 System.out.println("Game constructor");
 }
}
class BoardGame extends Game {
 BoardGame(int i) {
 super(i);
 System.out.println("BoardGame constructor");
 }
}
public class Chess extends BoardGame {
 Chess() {
 super(11);
 System.out.println("Chess constructor");
 }
}

More about inheritance

• “Upcasting”

✦The type of an object is the class that the object is an instance of.

✦Java permits an object of a subclass type to be treated as an object of any

superclass type.

✦This is an implicit type conversion called upcasting

• When to use composition, when to use inheritance

✦Usually, composition is what you want

✦Use inheritance if you want the interface (public members) of the re-used

(superclass) object to be exposed in the new class

✦Use inheritance if you want your new class objects to be able to be passed

to methods expecting the re-used class (if you need upcasting).
11

Any method taking a Game as an argument can also take a BoardGame

Access specifiers (reminder)

• keywords that control access to the definitions they modify

✦public: accessible to all other classes

✦private: accessible only from within the class in which it is defined

✦package (unspecified, default): accessible only to other classes in the

same package

✦protected: accessible to all classes derived from (subclasses of) the class

containing this definition, even if the class is in another package.  
Note: protected also provides package access.

12

Polymorphism

• Upcasting:

✦Permitting an object of a subclass type to be treated as an object of any

superclass type.

• Polymorphism:

✦The ability of objects belonging to different types to respond to method

calls of the same name, each one according to an appropriate type-
specific behavior.

✦It allows many types (derived from the same superclass) to be treated as if
they were one type, and a single piece of code to work on all those
different types equally, yet getting type-specific behavior for each one.

13

Cleanser x = new Detergent();

Example:

• Wind, Stringed and Percussion are Instruments

14

class Instrument {
 void play(String n) {
 System.out.println("Instrument.play() " + n);
 }
}
class Wind extends Instrument {
 void play(String n) {
 System.out.println("Wind.play() " + n);
 }
}
class Stringed extends Instrument {
 void play(String n) {
 System.out.println("Stringed.play() " + n);
 }
}
class Percussion extends Instrument {
 void play(String n) {
 System.out.println("Percussion.play() " + n);
 }
}

Example continued

15

public class Music {
 public static void tune(Instrument i) {
 i.play("Middle C");
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 tune(flute); //upcasting to Instrument
 tune(violin); //upcasting to Instrument
 }
}

Wind.play() Middle C
Stringed.play() Middle C

What is output?

Polymorphism:

in tune, i is an Instrument, but it calls the play method

based on the specific type of the object it receives.

Instrument.play() Middle C
Instrument.play() Middle Cor

What if we didn’t have polymorphism?

• We have to overload tune to work for each subclass of Instrument

• If we add a new instrument, we have to add a new tune function

16

public class Music {
 public static void tune(Wind i) {
 i.play("Middle C");
 }
 public static void tune(Stringed i) {
 i.play("Middle C");
 }
 public static void tune(Percussion i) {
 i.play("Middle C");
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 tune(flute); // No upcasting necessary
 tune(violin);
 }
}

Wind.play() Middle C
Stringed.play() Middle C

Output:

But we do have upcasting and polymorphism:

• We can get the same effect with just one tune method

• What would the output be if we did not have polymorphism?

• Note: C++ requires “virtual” keyword (on play()) to get polymorphism.

17

public class Music {
 public static void tune(Instrument i) {
 i.play("Middle C");
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 Stringed violin = new Stringed();
 Percussion snaredrum = new Percussion();
 tune(flute); // upcasting
 tune(violin);
 tune(snaredrum); }
}

Wind.play() Middle C
Stringed.play() Middle C
Percussion.play() Middle C

Output: polymorphism

Dynamic (run-time) binding

• Given the definition of tune, how does the compiler know which
definition of the play method to call? Instrument? Wind? Stringed?

✦It will differ depending on the specific type of each argument passed to i.

✦This cannot be determined at compile time.

• Binding: connecting the method call to a method definition.

✦Static binding: done at compile time (play binds to Instrument.play)

✦Dynamic binding: at run-time, the JVM determines the actual type of i and

uses its play() definition. It can vary for each invocation of tune.

✦If the actual type of i does not define “play()”, the JVM looks for the

nearest definition in its superclass hierarchy.
18

public static void tune(Instrument i) {
 i.play("Middle C");
 }

Extensibility

• Lets go back to the polymorphic tune method, AND add some more
methods and instruments

19

Extensibility part 1

20

class Instrument {
 void play(String n) {
 System.out.println("Instrument.play() " + n);
 }
 String what() { return "Instrument"; }
 void adjust() {}
}
class Wind extends Instrument {
 void play(String n) {
 System.out.println("Wind.play() " + n);
 }
 String what() { return "Wind"; }
 void adjust() {}
}
class Percussion extends Instrument {
 void play(String n) {
 System.out.println("Percussion.play() " + n);
 }
 String what() { return "Percussion"; }
 void adjust() {}
}

Extensibility part 2

21

class Stringed extends Instrument {
 void play(String n) {
 System.out.println("Stringed.play() " + n);
 }
 String what() { return "Stringed"; }
 void adjust() {}
}
class Brass extends Wind {
 void play(String n) {
 System.out.println("Brass.play() " + n);
 }
 String what() { return “Brass”; }
}
class Woodwind extends Wind {
 void play(String n) {
 System.out.println("Woodwind.play() " + n);
 }
 String what() { return "Woodwind"; }
}

Extensibility part 3

22

public class Music3 {
 public static void tune(Instrument i) {
 i.play("Middle C");
 }
 public static void tuneAll(Instrument[] e) {
 for(int i = 0; i < e.length; i++)
 tune(e[i]);
 }
 public static void main(String[] args) {
 // Upcasting during addition to the array:
 Instrument[] orchestra = {
 new Wind(),
 new Percussion(),
 new Stringed(),
 new Brass(),
 new Woodwind()
 };
 tuneAll(orchestra);
 }
}

Wind.play() Middle C
Percussion.play() Middle C
Stringed.play() Middle C
Brass.play() Middle C
Woodwind.play() Middle C

Output:

• We extended our
system by adding
methods and new
subclasses,

• But we did NOT need
to change (or add to)
the tune function.

Abstract methods and classes

• Purpose of the Instrument class is to create a common interface
(public methods) for its subclasses

✦No intention of making direct instances of Instrument

• An abstract class is a class that cannot be instantiated, but it can
be subclassed

• It may or may not include abstract methods.

• An abstract method is a method that is declared without a method

body (without braces, and followed by a semicolon), like this:

• If a class contains an abstract method, it must be declared to be
an abstract class.

23

abstract void f(int x);

Abstract methods and classes, example

• Any class that inherits from an abstract class must provide method
definitions for all the abstract methods in the base class.

✦Unless the derived class is also declared to be abstract

• The Instrument class can be made abstract:

✦No longer need “dummy” definitions for abstract methods

✦Programmer and compiler understand how the class is to be used.

24

abstract class Instrument {
 private int i; // Storage allocated in each subclass
 abstract void play(String n); //subclass must define
 String what() {
 return “Instrument"; //when would this be called?
 }
 abstract void adjust(); //subclass must define
}

Interfaces

• In the Java programming language, an interface is a form or
template for a class: all of its methods must be abstract (no
method bodies).

• Interfaces cannot be instantiated—they can only be implemented
by classes or extended by other interfaces.

• Interfaces cannot have constructors (there are no fields to initialize).

• An interface is a “pure” abstract class: no instance-specific items.

• An interface may contain fields, but these are implicitly static and
final (named constants)

25

Interfaces

• To create an interface, use the interface keyword instead of the
class keyword.

✦ The methods (and fields) are automatically public

• To use an interface, you write a class that implements the interface.

✦A (concrete) class implements the interface by providing a method body

for each of the methods declared in the interface.

• An interface can be used as a type (for variables, parameters, etc)

✦Java permits an object instance of a class that implements an interface to

be upcast to the interface type

26

Interfaces, example

27

interface Instrument {
 void play(String n); // Automatically public
 String what(); // and abstract
 void adjust();
}
class Wind implements Instrument {
 public void play(String n) {
 System.out.println("Wind.play() " + n); }
 public String what() { return "Wind"; }
 public void adjust() {}
}
class Percussion implements Instrument {
 public void play(String n) {
 System.out.println("Percussion.play() " + n); }
 public String what() { return "Percussion"; }
 public void adjust() {}
}
class Stringed implements Instrument {
 public void play(String n) {
 System.out.println("Stringed.play() " + n); }
 public String what() { return "Stringed"; }
 public void adjust() {}
}

Had to change access

of methods to public

(they were package)

Classes MUST define

ALL the methods

28

class Brass extends Wind {
 public void play(String n) {
 System.out.println("Brass.play() " + n);
 }
 public String what() { return "Brass"; }
}

class Woodwind extends Wind {
 public void play(String n) {
 System.out.println("Woodwind.play() " + n);
 }
 public String what() { return "Woodwind"; }
}

public class Music5 {
 public static void tune(Instrument i) { //unchanged
 i.play("Middle C");
 }
 public static void tuneAll(Instrument[] e) {
 for(int i = 0; i < e.length; i++)
 tune(e[i]);
 }
 public static void main(String[] args) {
 Instrument[] orchestra = {
 new Wind(),
 new Percussion(),
 new Stringed(),
 new Brass(),
 new Woodwind()
 };
 tuneAll(orchestra);
 }
}

Wind.play() Middle C
Percussion.play() Middle C
Stringed.play() Middle C
Brass.play() Middle C
Woodwind.play() Middle C

Output:

The rest of the code

is the same as before

“Multiple Inheritance”

• A Class may have only one immediate superclass

✦ But it may have many ancestors in the hierarchy

• A Class my implement any number of interfaces.

✦ This allows you to say an x is an A and a B and a C

29 30

interface CanFight {
 void fight();
}
interface CanSwim {
 void swim();
}
interface CanFly {
 void fly();
}
class ActionCharacter {
 public void fight() {System.out.println("fight");}
}
class Hero extends ActionCharacter implements CanFight, CanSwim, CanFly {
 public void swim() {System.out.println("swim");}
 public void fly() {System.out.println("fly");}
}
public class Adventure {
 public static void t(CanFight x) { x.fight(); }
 public static void u(CanSwim x) { x.swim(); }
 public static void v(CanFly x) { x.fly(); }
 public static void w(ActionCharacter x) { x.fight(); }
 public static void main(String[] args) {
 Hero h = new Hero();
 t(h); // Treat it as a CanFight
 u(h); // Treat it as a CanSwim
 v(h); // Treat it as a CanFly
 w(h); // Treat it as an ActionCharacter
 }
}

Multiple Inheritance example

Extending an Interface

• Suppose that later you want to add a third method to DoIt:

• If you make this change, all classes that implement the old DoIt
interface will break because they don't implement the interface

31

public interface DoIt {
 void doSomething(int i, double x);
 int doSomethingElse(String s);
}

public interface DoIt {
 void doSomething(int i, double x);
 int doSomethingElse(String s);
 boolean didItWork(int i, double x, String s);
}

Extending an Interface

• Solution: you could create a DoItPlus interface that extends DoIt.

• Now users of your code can choose to continue to use the old
interface (DoIt) or to “upgrade” to the new interface (DoItPlus).

32

public interface DoItPlus extends DoIt {
 boolean didItWork(int i, double x, String s);
}

Interface or Abstract class?

• Interface

✦Pro: can be implemented by any number of classes

✦Con: each class must have its own code for the methods, common

method implementations must be duplicated in each class

• Abstract Class

✦Pro: subclasses do not have to repeat common method implementations,

common code is in the abstract superclass

✦Con: Cannot be multiply inherited.

33

Implementing the Java Comparable Interface

• Assume you want to sort an array or ArrayList of custom objects
(instances of some class you created).

• The following static methods are available in the Java API:

• All elements in the list/array must implement the
java.lang.Comparable<T> interface:

34

int compareTo(T o); //T is your custom class

Compares this object with the specified object (o) for order.
Returns a negative integer, zero, or a positive integer when this object is
less than, equal to, or greater than (respectively) the specified object.

void Collections.sort(List<T> list) // for ArrayLists
void Arrays.sort(Object [] a) // for static arrays

Sorting with Comparable, example

35

import java.util.*;

public class Student implements Comparable<Student> {
 private String name;
 private String major;
 private int idNumber;
 private float gpa;
 public Student(String name, String major,
 int idNumber, float gpa) {
 this.name = name; this.major = major;
 this.idNumber = idNumber; this.gpa = gpa;
 }
 public String toString() {
 return "Student: " + name + " " +major + " "
 + idNumber + " " + gpa;
 }
 public int compareTo(Student rhs) {
 return name.compareTo(rhs.name);
 }

compareTo is already
defined in String, so
we can reuse it.

This will sort by name

Sorting with Comparable, example (p2)

36

 public static void main(String[] args) {
 Student[] a = new Student[3];
 a[0] = new Student("Doe, J","Math",1234,3.6F);
 a[1] = new Student("Carr, M","CS",1000,2.7F);
 a[2] = new Student("Ames, D","Business",2233,3.7F);
 System.out.println("Before: ");
 for (int i=0; i<a.length; i++)
 System.out.println(a[i]);
 Arrays.sort(a);
 System.out.println("After: ");
 for (int i=0; i<a.length; i++)
 System.out.println(a[i]);
 }
}

Before:
Student: Doe, J Math 1234 3.6
Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:
Student: Ames, D Business 2233 3.7
Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6

Output:

Sorting with Comparable, sort by gpa

37

 public int compareTo(Student rhs) {
 float rhsGpa = rhs.gpa;
 if (gpa < rhsGpa) return -1;
 if (gpa == rhsGpa) return 0;
 return 1;
 } // or return Math.round(gpa - rhsGpa);
 // or return (new Float(gpa)).compareTo(rhsGpa);

Before:
Student: Doe, J Math 1234 3.6
Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:
Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6
Student: Ames, D Business 2233 3.7

Output:

• To sort by gpa, redefine compareTo as follows:

Note: compareTo is
already defined in the
primitive-type
wrapper classes

