Java - Inheritance/Polymorphism/Interface

CS 4354
Summer Il 2015

Jill Seaman

Reusing Classes in Java

+ Composition
4+A new class is composed of object instances of existing classes.
+Fields of one class contain objects from another.

+Name class can be made up of three Strings (first, middle, last),
Student class can contain a Name object and other Strings.

* Inheritance
+Creates a new class as an extension to an existing class.

+New class adds code to the existing class the without modifying it,
resulting in two classes (the original class and the extension).

+All classes inherit from Java standard class java.lang.Object.

Simple Example of Composition

class WaterSource {
private String s;
WaterSource() {
System.out.println("WaterSource()");
s = new String("Constructed");
}
}

public class SprinklerSystem {

private String valvel, valve2, valve3, valved;

private WaterSource source;

SprinklerSystem() {
System.out.println("SprinklerSystem");
valvel = "v1";
source = new WaterSource();

Inheritance

+ A way to reuse code from existing classes by extending an existing
class with new fields and methods

« Classes can inherit attributes and behavior from pre-existing
classes called base classes, superclasses, or parent classes. The
resulting classes are known as derived classes, subclasses or child
classes.

* The relationships of classes through inheritance gives rise to a
hierarchy.

* In Java, each class has exactly one superclass. If none are
specified, then java.lang.Object is the superclass.

* Note: In Java, constructors are NOT inherited.

Simple Example of Inheritance Simple Example of Inheritance

public class Detergent extends Cleanser { |extends is used to
// Change (override) a method: specify the base-class
public void scrub() {
append (" Detergent.scrub()");
super.scrub(); // Call base-class version

class Cleanser {
private String s = new String("Cleanser");
public void append(String a) { s += a; }
public void dilute() { append(" dilute()"); }
public void apply() { append(" apply()"); }

1i i r nd(" r ") }
pub -c vo q s¢ ub()-{ append (" scrub()"); } . // Add methods to the interface:
public String toString() { return s; } toString is a method . . " "
. . public void foam() { append(" foam()"); }
of java.lang.Object
// Test the new class:

public static void main(String[] args) {
Cleanser x = new Cleanser();
x.dilute(); x.apply(); x.scrub();
System.out.println(x);

}

public static void main(String[] args) {
Detergent X = new Detergent();
x.dilute(); =x.apply(); =x.scrub(); x.foam();
System.out.println(x);
Cleanser.main(args);

} }
}
Output: Output:
’ Cleanser dilute() apply() scrub() Cleanser dilute() apply() Detergent.scrub() scrub() foam()
s Cleanser dilute() apply() scrub()
General convention Some things you can do in a subclass

) . » The inherited fields (from the superclass) can be used directly, just
* Fields are private like any other fields (unless they are private).

#Not even subclasses should access these directly « You can declare a field in the subclass with the same name as the

* Methods are public one in the superclass, thus hiding it (not recommended).
4+This is so other classes, including subclasses can access them. * You can declare new fields in the subclass that are not in the
superclass.

- Overriding a method: * The inherited methpds (from the superclass) can be used directly
(unless they are private).
+Writing a new instance method in the subclass that has the same signature

as the one in the superclass. * You can write a new instance method in the subclass that has the

same signature as the one in the superclass, thus overriding it.
+Any instance of the subclass will use the method from the subclass

* You can declare new methods in the subclass that are not in the

+Any instance of the superclass will use the method from the superclass
superclass.

4+The subclass can call the superclass method using “super.method()”

Initialization

+ Java automatically inserts calls to the (default) superclass
constructor at the beginning of the subclass constructor.

class Art {
Art() {
System.out.println("Art constructor");

’ Output:

}

class Drawing extends Art {
Drawing() {
System.out.println("Drawing constructor");

Art constructor
Drawing constructor
Cartoon constructor

}
}

public class Cartoon extends Drawing {
public Cartoon() {

System.out.println("Cartoon constructor"); So constructors are not

} . :
. inherited, they are called
public static void main(String[] args) { from the constructors of

Cartoon x = new Cartoon();
} the subclass.

} 9

Initialization

« If your class doesn’t have default (no arg) constructors, or if you want to
call a superclass constructor that has an argument, you must explicitly
write the calls to the superclass constructor using the super keyword
and the appropriate argument list

class Game {
Game (int i) {
System.out.println("Game constructor");

}

}

class BoardGame extends Game {
BoardGame (int i) {
super(i);
System.out.println("BoardGame constructor");
}
}

public class Chess extends BoardGame {
Chess () {
super(11);
System.out.println("Chess constructor");

}

}

More about inheritance

+ “Upcasting”
+The type of an object is the class that the object is an instance of.

+Java permits an object of a subclass type to be treated as an object of any
superclass type.

+This is an implicit type conversion called upcasting

’Any method taking a Game as an argument can also take a BoardGame

* When to use composition, when to use inheritance
4+Usually, composition is what you want

+Use inheritance if you want the interface (public members) of the re-used
(superclass) object to be exposed in the new class

4+Use inheritance if you want your new class objects to be able to be passed

to methods expecting the re-used class (if you need upcasting).
"

Access specifiers (reminder)

+ keywords that control access to the definitions they modify
4public: accessible to all other classes
+private: accessible only from within the class in which it is defined

+package (unspecified, default): accessible only to other classes in the
same package

+protected: accessible to all classes derived from (subclasses of) the class
containing this definition, even if the class is in another package.
Note: protected also provides package access.

Polymorphism

+ Upcasting:

4+Permitting an object of a subclass type to be treated as an object of any
superclass type.

Cleanser x = new Detergent();

* Polymorphism:

+The ability of objects belonging to different types to respond to method
calls of the same name, each one according to an appropriate type-
specific behavior.

+It allows many types (derived from the same superclass) to be treated as if
they were one type, and a single piece of code to work on all those
different types equally, yet getting type-specific behavior for each one.

Example:

+ Wind, Stringed and Percussion are Instruments

class Instrument {
void play(String n) {
System.out.println("Instrument.play() " + n);
}
}

class Wind extends Instrument {
void play(String n) {
System.out.println("Wind.play() " + n);
}
}
class Stringed extends Instrument {
void play(String n) {
System.out.println("Stringed.play() " + n);
}
}
class Percussion extends Instrument {
void play(String n) {
System.out.println("Percussion.play() " + n);

}

}

Example continued

public class Music {
public static void tune(Instrument i) {
i.play("Middle C");
}
public static void main(String[] args) {
Wind flute = new Wind();
Stringed violin = new Stringed();
tune(flute); //upcasting to Instrument
tune(violin); //upcasting to Instrument
}
}

What is output?

Wind.play() Middle C Instrument.play() Middle C
Stringed.play() Middle C or Instrument.play() Middle C

Polymorphism:
in tune, i is an Instrument, but it calls the play method
based on the specific type of the object it receives.

What if we didn’t have polymorphism?

* We have to overload tune to work for each subclass of Instrument

- If we add a new instrument, we have to add a new tune function

public class Music {
public static void tune(Wind i) {
i.play("Middle C");
' Output:

public static void tune(Stringed i) {

i.play("Middle C"); Wind.play() Middle C
} ! Stringed.play() Middle C

public static void tune(Percussion i) {
i.play("Middle C");

}

public static void main(String[] args) {
Wind flute = new Wind();
Stringed violin = new Stringed();
tune(flute); // No upcasting necessary
tune(violin);

But we do have upcasting and polymorphism:

+ We can get the same effect with just one tune method

public class Music {
public static void tune(Instrument i) {
i.play("Middle C");
}
public static void main(String[] args) {
Wind flute = new Wind();

Stringed violin = new Stringed(); ()utput:polymorphlsm

Percussion snaredrum = new Percussion();
tune(flute); // upcasting
tune(violin);

Wind.play() Middle C
Stringed.play() Middle C
Percussion.play() Middle C

tune(snaredrum); }

« What would the output be if we did not have polymorphism?

* Note: C++ requires “virtual” keyword (on play()) to get polymorphism.

Dynamic (run-time) binding

+ Given the definition of tune, how does the compiler know which
definition of the play method to call? Instrument? Wind? Stringed?

public static void tune(Instrument i) {
i.play("Middle C");
}

+It will differ depending on the specific type of each argument passed to i.
4+This cannot be determined at compile time.

+ Binding: connecting the method call to a method definition.
+Static binding: done at compile time (play binds to Instrument.play)

4+Dynamic binding: at run-time, the JVM determines the actual type of i and
uses its play() definition. It can vary for each invocation of tune.

+If the actual type of i does not define “play()”, the JVM looks for the
nearest definition in its superclass hierarchy.

Extensibility

* Lets go back to the polymorphic tune method, AND add some more
methods and instruments

Instrurment

void play()
String what{)
void adjust()

I

Wind Percussion Stringed

4

I

Woodwind Brass

Extensibility part 1

class Instrument {
void play(String n) {
System.out.println("Instrument.play() " + n);
}
String what() { return "Instrument"; }
void adjust() {}
}
class Wind extends Instrument {
void play(String n) {
System.out.println("Wind.play() " + n);
}
String what() { return "Wind"; }
void adjust() {}
}
class Percussion extends Instrument {
void play(String n) {
System.out.println("Percussion.play() " + n);
}
String what() { return "Percussion"; }
void adjust() {}

}

20

Extensibility part 2 Extensibility part 3

public class Music3 { ()utput:
blic static void tune(Instrument i . .
class Stringed extends Instrument { pub-t 1 ";'dgll C"u. (s B A Wind.play() Middle C
void play(String n) { } 1.play("Mi e)i Percussion.play() Middle C
. " : " . Stringed.play() Middle C
} System.out.println("Stringed.play() +on); public static void tuneAll(Instrument[] e) { |prass.play() Middle C
for(int i = 0; i < e.length; i++ ind. i
String what() { return "Stringed"; } tl(me(e[i]): g) Woodwind.play() Middle C
void adjust() {} } !
} . public static void main(String[] args) {
claz;dBrizs(:zzggdsn?l?d { // Upcasting during addition to the array: |° We extended our
vold play ing Inst t hestra = i
System.out.println("Brass.play() " + n); nrslew];u$?.2dg : orchestra { SyStem by addmg
} - methods and new
. new Percussion(),
String what() { return “Brass”; } new Stringed(), subclasses,
})] new Brass(), .
clas§dWo;>dw1gd gxtenc;ls{WJ.nd { new Woodwind() * But we did NOT need
void play(String n i t
; " . " ; o change (or add to)
System.out.println("Woodwind.play() + n); . ‘
}) tuneAll (orchestra); the tune function.
String what() { return "Woodwind"; } }
}
21 22
Abstract methods and classes Abstract methods and classes, example

* Any class that inherits from an abstract class must provide method

* Purpose of the Instrument class is to create a common interface j L .
definitions for all the abstract methods in the base class.

(public methods) for its subclasses

+No intention of making direct instances of Instrument +Unless the derived class is also declared to be abstract

- An abstract class is a class that cannot be instantiated, but it can * The Instrument class can be made abstract:

be subclassed 4+No longer need “dummy” definitions for abstract methods
* It may or may not include abstract methods. +Programmer and compiler understand how the class is to be used.
* An abstract method is a method that is declared without a method abstract class Instrument {

body (without braces, and followed by a semicolon), like this: private int i; // Storage allocated in each subclass

abstract void play(String n); //subclass must define
’abstract void f(int x); ‘ String what() {
.) return “Instrument"; //when would this be called?

« If a class contains an abstract method, it must be declared to be }

an abstract class. abstract void adjust(); //subclass must define

}

23 24

Interfaces Interfaces

* In the Java programming language, an interface is a form or + To create an interface, use the interface keyword instead of the
template for a class: all of its methods must be abstract (no class keyword.

method bodies). 4+ The methods (and fields) are automatically public

+ Interfaces cannot be instantiated —they can only be implemented

by classes or extended by other interfaces.
) o » To use an interface, you write a class that implements the interface.
* Interfaces cannot have constructors (there are no fields to initialize).
. . . o +A (concrete) class implements the interface by providing a method body
* An interface is a “pure” abstract class: no instance-specific items. for each of the methods declared in the interface.

* An interface may contain ﬁeldS, but these are ImpIICItIy static and * An interface can be used as a type (for Variab|e8, parameterS, etc)

final (hamed constants
() +Java permits an object instance of a class that implements an interface to

be upcast to the interface type

25 26

class Brass extends Wind {
public void play(String n) {

System.out.println("Brass.play() " + n);
}
|nterfaces, example public String what() { return "Brass"; }
}
interféce Instrument { . . class Woodwind extends Wind { The rest of the code
void play(String n); // Automatically public public void play(String n) { is the same as before
String what(); // and abstract System.out.println("Woodwind.play() " + n);
void adjust(); L))
u ic ring wha return ‘oodw1n H
) public String what() { ret "Woodwind"; }
class Wind implements Instrument { '
public void play(String n) { public class Music5 {
System.out.println("Wind.play() " + n); } public static void tune(Instrument i) { //unchanged
public String what() { return "Wind"; } Had to change access i.play("Middle C"); Outout:
public void adjust() {} of methods to public yo _ ‘ . put. :
} (they were package) pukf)llc static \(;01d tunezi\ll(IEstrument[] e) { Wind.play() Middle C
int i = 0; 1 < e. th; i++ : :
class Percussion implements Instrument { O;ﬁ:z eli ; Pee) Perr':ussz.on.play().MJ.ddle ¢
: . . (elil); Stringed.play() Middle C
public void play(String n) { } Brass.play() Middle C
System.out.println("Percussion.play() " + n); } public static void main(String[] args) { Woodwigd.glay() Middle C
public String what() { return "Percussion"; } Classes MUST define I"Strumensll orchestra = {
s . . new Wind(),
public void adjust() {} ALL the methods new Percussion(),
} , . new Stringed(),
class Stringed implements Instrument { new Brass(),
public void play(String n) { new Woodwind()
System.out.println("Stringed.play() " + n); } }i
public String what() { return "Stringed"; }) tuneAll(orchestra);
bli id adjust
X public void adjust() {} . } -8

“Multiple Inheritance”

+ A Class may have only one immediate superclass
4 But it may have many ancestors in the hierarchy
+ A Class my implement any number of interfaces.

4+ This allows you to say an xisan AandaBanda C

Abstract or Concrete | | interface 1
Base Uass B S

. interfacen :

:....4...,...(..3........4'

interface n

Base Class Methods |interface 1 |interface 2

29

interface CanFight H .
void signetrr Multiple Inheritance example
}
interface CanSwim {
void swim();
}
interface CanFly {
void fly();
}
class ActionCharacter {
public void fight() {System.out.println("fight");}
}
class Hero extends ActionCharacter implements CanFight, CanSwim, CanFly {
public void swim() {System.out.println("swim");}
public void fly() {System.out.println("£fly");}
}
public class Adventure {
public static void t(CanFight x) { x.fight(); }
public static void u(CanSwim x) { x.swim(); }
public static void v(CanFly x) { x.fly(); }
public static void w(ActionCharacter x) { x.fight(); }
public static void main(String[] args) {
Hero h = new Hero();
t(h); // Treat it as a CanFight
u(h); // Treat it as a CanSwim
v(h); // Treat it as a CanFly
w(h); // Treat it as an ActionCharacter

Extending an Interface

public interface DoIt {
void doSomething(int i, double x);
int doSomethingElse(String s);

» Suppose that later you want to add a third method to Dolt:

public interface DoIt {
void doSomething(int i, double x);
int doSomethingElse(String s);
boolean didItWork(int i, double x, String s);

* If you make this change, all classes that implement the old Dolt
interface will break because they don't implement the interface

31

Extending an Interface

+ Solution: you could create a DoltPlus interface that extends Dolt.

public interface DoItPlus extends DolIt {
boolean didItWork(int i, double x, String s);

}

* Now users of your code can choose to continue to use the old
interface (Dolt) or to “upgrade” to the new interface (DoltPlus).

32

Interface or Abstract class?

* Interface
4+Pro: can be implemented by any number of classes

4Con: each class must have its own code for the methods, common
method implementations must be duplicated in each class

» Abstract Class

4+Pro: subclasses do not have to repeat common method implementations,
common code is in the abstract superclass

4+Con: Cannot be multiply inherited.

33

Implementing the Java Comparable Interface

+ Assume you want to sort an array or ArrayList of custom objects
(instances of some class you created).

* The following static methods are available in the Java API:

void Collections.sort(List<T> list) // for ArrayLists
void Arrays.sort(Object [] a) // for static arrays

+ All elements in the list/array must implement the
java.lang.Comparable<T> interface:

int compareTo(T o0); //T is your custom class

Compares this object with the specified object (o) for order.
Returns a negative integer, zero, or a positive integer when this object is
less than, equal to, or greater than (respectively) the specified object.

34

Sorting with Comparable, example

import java.util.*;

public class Student implements Comparable<Student> {

private String name;

private String major;

private int idNumber;

private float gpa;

public Student(String name, String major,

int idNumber, float gpa) {

this.name = name; this.major = major;
this.idNumber = idNumber; this.gpa = gpa;

}
public String toString() {
return "Student: " + name + " " +major + " "
+ idNumber + " " + ; :
} Lefumber apa; This will sort by name ‘

public int compareTo(Student rhs) {

compareTo is already
return name.compareTo(rhs.name);

defined in String, so

’ we can reuse it.

35

Sorting with Comparable, example (p2)

public static void main(String[] args) {

Student[] a = new Student[3];

a[0] = new Student("Doe, J","Math",1234,3.6F);

al[l] new Student("Carr, M","CS",1000,2.7F);

a[2] = new Student("Ames, D","Business",2233,3.7F);

System.out.println("Before: ");

for (int i=0; i<a.length; i++)
System.out.println(a[i]);

Arrays.sort(a);

System.out.println("After: ");

for (int i=0; i<a.length; i++)
System.out.println(a[i]);

}

}
()utput: Before:

Student: Doe, J Math 1234 3.6
Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:

Student: Ames, D Business 2233 3.7
Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6

36

Sorting with Comparable, sort by gpa

+ To sort by gpa, redefine compareTo as follows:

public int compareTo(Student rhs) {
float rhsGpa = rhs.gpa;
if (gpa < rhsGpa) return -1;
if (gpa == rhsGpa) return 0;
return 1;
} // or return Math.round(gpa - rhsGpa);

// or return (new Float(gpa)).compareTo(rhsGpa);

OUtpUt: Before:

Student: Doe, J Math 1234 3.6
Student: Carr, M CS 1000 2.7
Student: Ames, D Business 2233 3.7
After:

Note: compareTo is
already defined in the
primitive-type
wrapper classes

Student: Carr, M CS 1000 2.7
Student: Doe, J Math 1234 3.6
Student: Ames, D Business 2233 3.7

37

