
Java - Exceptions

CS 4354

Summer II 2015

Jill Seaman

1

Error Handling in Java

• Run time errors

✦It is difficult to recover gracefully from run-time errors that occur in the

middle of a program.

✦At the point where the problem occurs, there often isn’t enough

information in that context (the method) to resolve the problem.

✦ In Java, that method hands off the problem out to a higher context (a

calling method) where someone is qualified to make the proper decision

✦There is no need to check for errors at multiple places (after each call to

access a file, for instance). The code to handle a given error can be put in
a single location in the code (the exception handler).

• If the error can be resolved in the immediate context where it
occurs, it is NOT called an exception.

2

Exception semantics - 1

• When an error occurs inside a method, the method creates an
exception object.

✦could be in a library method or a user-defined method

✦exceptions are instances of java.lang.Exception

• The exception object contains information about the error,
including:

✦the type of the exception and

✦the state of the program when the error occurred (the call stack)

• Creating an exception and reporting it to the runtime system is
called throwing an exception.

3

Exception semantics - 2

• When a method throws an exception,

✦the current path of execution is interrupted, and

✦the runtime system attempts to find an appropriate place to continue

executing the program.

• The runtime system searches the call stack for an appropriate
exception handler

✦the call stack: the list of methods that have been called and are waiting for

the current method to return.

✦A calls B that calls C that calls D: The call stack contains A, B, C and D

with D on the top.

4

Exception semantics - 3

• The runtime system is looking for a previous method call that is
embedded in a block that has an exception handler associated
with it.

✦It starts at the top of the call stack and goes down (in reverse order in

which the methods were called)

• The runtime system is searching for an appropriate exception
handler

✦An exception handler is considered appropriate if the type of the exception

object thrown matches the type that can be handled by the handler

✦type “matching” is the same as is used for function calls, a thrown

exception matches any superclass of its type.

5

Exception semantics - 4

• The first exception handler encountered that matches the
exception is said to catch the exception.

• If the runtime system exhaustively searches all the methods on the
call stack without finding an appropriate exception handler, the
runtime system terminates the program.

✦And usually the exception is output to the screen

6

Exception simple example

• What part of the code throws the exception?

• Output

7

// File Name : ExcepTest.java
import java.io.*;
public class ExcepTest{

 public static void main(String args[]){
 try{
 int a[] = new int[2];
 System.out.println("Access element three :" + a[3]);
 System.out.println(“After element access");
 }catch(ArrayIndexOutOfBoundsException e){
 System.out.println("Exception thrown :" + e);
 }
 System.out.println("Out of the block");
 }
}

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
Out of the block

Exception syntax: how to throw an exception

8

• To throw an exception, use the keyword throw.

• To create an exception, use the appropriate constructor.

• This will cause the enclosing method to be exited.

✦If the error can be handled inside the method, there is generally no need to

throw an exception.

• Exception classes can be found in the API website: see
java.lang.Exception

 if (t==null)
 throw new NullPointerException();

Exception syntax: how to catch an exception

9

• To catch an exception, use the try-catch block.

• Surround the code that might generate an exception in the try

• Make an exception handler (a catch clause) for every exception

type you want to catch.

try {
 // Code that calls methods that might throw exceptions
} catch(Type1 id1) {
 // Handle exceptions of Type1
} catch(Type2 id2) {
 // Handle exceptions of Type2
} catch(Type3 id3) {
 // Handle exceptions of Type3
}

// etc...

Exception syntax: how to catch an exception

10

• Each catch clause is like a little method that takes one argument of
a particular type.

• The parameter (id1, id2, and so on) can be used inside the handler,
just like a method argument.

• If the handler catches an exception, its catch block is executed,
and the flow of control proceeds to the next statement after
(outside) the try/catch.

✦only the first matching catch clause is executed.

What can you do with an exception?

11

• printStackTrace().

✦This produces information about the sequence of methods that were

called to get to the point where the exception happened.

✦By default, the information goes to the standard error stream

• getMessage()

✦like toString() for exception classes.

✦a printable description of what went wrong

The exception specification: being civil

12

• In Java, you are (strongly!) encouraged to inform the client
programmer, who calls your method, of the exceptions that might
be thrown from your method

✦Then the caller can know exactly what catch clauses to write to catch all

potential exceptions.

• The exception specification states which exceptions are thrown by
a method.

✦Also use the @throws tag in the javadoc comment to describe these in
more detail (when/why each one is thrown).

• Catch or specify requirement: If the method throws exceptions, it
must handle them or specify them in the signature.

✦Otherwise it’s a compiler error.

void f() throws TooBig, TooSmall, DivZero { //...

Catch or Specify: example

13

//Note: This class won't compile by design!
import java.io.*;
import java.util.ArrayList;

public class ListOfNumbers {
private ArrayList<Integer> ints;
private static final int SIZE = 10;

public ListOfNumbers () {
ints = new ArrayList<Integer>(SIZE);
for (int i = 0; i < SIZE; i++) {

ints.add(i);
}

}

public void writeList() {
PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + ints.get(i));
}
out.close();

}
}

error: unreported exception IOException;

must be caught or declared to be thrown

Catch or Specify: solution 1

14

//Note: This class now compiles
import java.io.*;
import java.util.ArrayList;

public class ListOfNumbers {
private ArrayList<Integer> ints;
private static final int SIZE = 10;

public ListOfNumbers () {
ints = new ArrayList<Integer>(SIZE);
for (int i = 0; i < SIZE; i++) {

ints.add(i);
}

}

public void writeList() throws IOException {
PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + ints.get(i));
}
out.close();

}
}

Catch or Specify: solution 2

15

public void writeList() {

PrintWriter out = null;

try {
 out = new PrintWriter(new FileWriter("OutFile.txt"));

 for (int i = 0; i < SIZE; i++) {
 out.println("Value at: " + i + " = " + ints.get(i));

 }
} catch (IOException e) {

e.printStackTrace();
}

if (out != null)
 out.close();

}

Runtime Exceptions: an exception to the rule

16

• RuntimeExceptions are a special (sub)class of Exceptions.

✦They are thrown automatically by Java in certain contexts

✦This is part of the standard run-time checking that Java performs for you

• These exceptions are “unchecked exceptions”, they do not need to
conform to the “Catch or specify rule.

✦Methods are not required to indicate if they might throw one

✦Methods are not required to try to catch them

• What if they are not caught?

✦If a RuntimeException gets all the way out to main() without being caught,

printStackTrace() is called for that exception as the program exits

Runtime Exceptions: an exception to the rule

17

• Why are RuntimeExceptions not required to be caught?

✦They are generally caused by programmer errors (bugs)  

[These exceptions are very useful during testing]

✦There may be no graceful way to recover from these bugs

• What are some examples of RunTimeExceptions?

✦NullPointerException

✦ClassCastException

✦ArrayIndexOutOfBoundsException

✦See the API website for more

You can create your own exceptions

18

• If one of the Java Exceptions is not appropriate for your program,
you can create your own Exception classes

✦The class must inherit from an existing exception class, preferably one that

is close in meaning to your new exception.
class SimpleException extends Exception {}

class SimpleExceptionDemo {
 public void f() throws SimpleException {
 System.out.println("Throw SimpleException from f()");
 throw new SimpleException();
}}
public class DemoDriver {
 public static void main(String[] args) {
 SimpleExceptionDemo sed = new SimpleExceptionDemo();
 try {
 sed.f();
 } catch(SimpleException e) {
 System.err.println("Caught it!");
 }
}}

