
Week 10: Functions 2

Gaddis: 6.5,7-10,13

CS 1428
Fall 2015

Jill Seaman

1

6.7 The return statement

2

! Used to stop the execution of a void function
! Can be placed anywhere in the function body
‣ the function immediately transfers control back to the

statement that called it.

! Statements that follow the return statement will
not be executed

! In a void function with no return statement,  
the compiler adds a return statement before the
last }

return;

The return statement: example

3

void someFunc (int x) {

 if (x < 0)

 cout << “x must not be negative.” << endl;

 else {

 // Continue with lots of statements, indented

 // ...

 // so many it’s hard to keep track of matching {}

 }

}

void someFunc (int x) {

 if (x < 0) {

 cout << “x must not be negative.” << endl;

 return;

 }

 // Continue with lots of statements, less indentation,

 // no brackets to try to match ...

}

This is equivalent, easier to read

6.8 Returning a value from a
function

4

• You can use the return statement in a non-void
function to send a value back to the function
call:

• The value of the expr will be sent back.
• The data type of expr must be placed in the

function header: 

return expr;

int doubleIt(int x) {
 return x*2;
}

Return type:

Value being returned

Calling a function that returns a
value

5

! If the function returns void, the function call is a
statement:

! If the function returns a value, the function call is
an expression:

! The value of the function call (underlined) is the
value of the expr returned from the function,  
and you should do something with it.

pluses(4);

int y = doubleIt(4);

Returning the sum of two ints

6

#include <iostream>

using namespace std;

int sum(int,int);

int main() {

 int value1;

 int value2;

 int total;

 cout << "Enter 2 numbers: " << endl;

 cin >> value1 >> value2;

 total = sum(value1, value2);

 cout << "The sum is " << total << endl;

}

int sum(int x, int y) {

 return x + y;

}

Enter 2 numbers:
20 40
The sum is 60

Output:

Data transfer

7

• The function call from main: 
passes the values stored in value1 and value2 (20
and 40) to the function, assigning them to x and y.

• The result, x+y (60), is returned to the call and
stored in total.

x

x y

y

sum(value1, value2)

Function call expression

8

• When a function call calls a function that returns
a value, it is an expression.

• The function call can occur in any context
where an expression is allowed:
‣ assign to variable (or array element)

‣ output via cout

‣ use in a more complicated expression

‣ pass as an argument to another function

• The value of the function call is determined by
the value of the expression returned from the
function.

total = sum(x,y);

cout << sum(x,y);

cout << sum(x,y)*.1;

z = pow(sum(x,y),2);

Q1

6.9 Returning a boolean value

9

• the above function is equivalent to this one:

bool isValid(int number)
{
 bool status;
 if (number >=1 && number <= 100)
 status = true;
 else
 status = false;
 return status;
}

bool isValid (int number) {
 return (number >=1 && number <= 100);
}

Returning a boolean value

10

• You can call the function in an if or while:
bool isValid(int);

int main() {
 int val;
 cout << “Enter a value between 1 and 100: ”
 cin >> val;

 while (!isValid(val)) {
 cout << “That value was not in range.\n”;
 cout << “Enter a value between 1 and 100: ”
 cin >> val;
 }
 // . . .

6.5 Passing Data by Value
(review)

11

• Pass by value: when an argument is passed to
a function, its value is copied into the
parameter.

• Parameter passing is implemented using
variable initialization (behind the scenes): 

• Changes to the parameter in the function
definition cannot affect the value of the
argument in the call

int param = argument;

#include <iostream>

using namespace std;

void changeMe(int);

int main() {

 int number = 12;

 cout << "number is " << number << endl;

 changeMe(number);

 cout << "Back in main, number is " << number << endl;

 return 0;

}

void changeMe(int myValue) {

 myValue = 200;

 cout << "myValue is " << myValue << endl;

}

Example: Pass by Value

12

number is 12
myValue is 200
Back in main, number is 12

Output:

int myValue = number;

changeMe failed!

Pass by Value notes

13

When the argument is a variable (as in f(x)):
• The parameter is initialized to a copy of the

argument’s value.
• Even if the body of the function changes the

parameter, the argument in the function call is
unchanged.

• The parameter and the argument are stored in
separate variables, separate locations in
memory.

6.13 Passing Data by Reference

14

• Pass by reference: when an argument is
passed to a function, the function has direct
access to the original argument.

• Pass by reference in C++ is implemented using
a reference parameter, which has an
ampersand (&) in front of it: 

• A reference parameter acts as an alias to its
argument.

• Changes to the parameter in the function DO
affect the value of the argument

void changeMe (int &myValue);

#include <iostream>

using namespace std;

void changeMe(int &);

int main() {

 int number = 12;

 cout << "number is " << number << endl;

 changeMe(number);

 cout << "Back in main, number is " << number << endl;

 return 0;

}

void changeMe(int &myValue) {

 myValue = 200;

 cout << "myValue is " << myValue << endl;

}

Example: Pass by Reference

15

number is 12
myValue is 200
Back in main, number is 200

Output:

myValue is an alias for number, 
only one shared variable

this statement changes number

double square(double number) {

 return number * number;

}

void getRadius(double &rad) {

 cout << "Enter the radius of the circle: ";

 cin >> rad;

}

int main() {

 const double PI = 3.14159;

 double radius;

 double area;

 cout << fixed << setprecision(2);

 getRadius(radius);

 area = PI * square(radius);

 cout << "The area is " << area << endl;

 return 0;

}

Using Pass by Reference for input

16

During the function execution,
rad is an alias to radius in the
main program.

Pass by Reference notes

17

• Changes made to a reference parameter are
actually made to its argument

• The & must be in the function header AND the
function prototype.

• The argument passed to a reference parameter
must be a variable – it cannot be a constant or
contain an operator (like +)

• Use when appropriate – don’t use when:
‣ the argument should not be changed by function (!)

‣ the function returns only 1 value: use return stmt!
Q2

6.10 Local and Global Variables

18

• Variables defined inside a function are local to
that function.
‣ They are hidden from the statements in other functions,

which cannot access them.

• Because the variables defined in a function are
hidden, other functions may have separate,
distinct variables with the same name.
‣ This is not bad style. These are easy to keep straight

• Parameters are also local to the function in
which they are defined.

#include <iostream>

using namespace std;

void anotherFunction();

int main() {

 int num = 1;

 cout << "In main, num is " << num << endl;

 anotherFunction();

 cout << "Back in main, num is " << num << endl;

 return 0;

}

void anotherFunction() {

 int num = 20;

 cout << "In anotherFunction, num is " << num << endl;

}

Local variables are hidden from
other functions

19

In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

Output:

This num variable is visible
only in main

This num variable is visible
only in anotherFunction

Local Variable Lifetime

20

• A function’s local variables and parameters
exist only while the function is executing.

• When the function begins, its parameters and
local variables (as their definitions are
encountered) are created in memory, and when
the function ends, the parameters and local
variables are destroyed.

• This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

Global Variables

21

• A global variable is any variable defined outside
all the functions in a program.  

• The scope of a global variable is the portion of
the program starting from the variable definition
to the end of the file  

• This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined

#include <iostream>

using namespace std;

void anotherFunction();

int num = 2;

int main() {

 cout << "In main, num is " << num << endl;

 anotherFunction();

 cout << "Back in main, num is " << num << endl;

 return 0;

}

void anotherFunction() {

 cout << "In anotherFunction, num is " << num << endl;

 num = 50;

 cout << "But now it is changed to " << num << endl;

}

Global Variables: example

22

In main, num is 2
In anotherFunction, num is 2
But now it is changed to 50
Back in main, num is 50

Output:

Q3

Global Variables/Constants

23

Do not use global variables!!! Because:
• They make programs difficult to debug.

‣ If the wrong value is stored in a global var, you must scan
the entire program to see where the variable is changed

• Functions that access globals are not self-
contained
‣ cannot easily reuse the function in another program.

‣ cannot understand the function without understanding how
the global is used everywhere

It is ok (and good) to use global constants
because their values do not change.

const double PI = 3.14159;  

double getArea(double number) {

 return PI * number * number;

}

double getPerimeter(double number) {

 return PI * 2 * number;

}

int main() {

 double radius;

 cout << fixed << setprecision(2);

 cout << "Enter the radius of the circle: ";

 cin >> radius;

 cout << "The area is " << getArea(radius) << endl;

 cout << "The perimeter is " << getPerimeter(radius) << endl;

}

Global Constants: example

24

Enter the radius of the circle: 2.2
The area is 15.21
The perimeter is 13.82

Output:

Q4

