
Week 6: Intro to Loops

Gaddis: 5.2-6

CS 1428
Fall 2015

Jill Seaman

1

Control Flow
 (order of execution)

2

• So far, control flow in our programs has
included:
‣ sequential processing (1st statement, then 2nd statement…)

‣ branching (conditionally skip some statements). 

• Chapter 5 introduces loops, which allow us to
conditionally repeat execution of some
statements.
‣ while loop

‣ do-while loop

‣ for loop

5.2 The while loop

3

! As long as the relational expression is true, repeat
the statement

while syntax and semantics

4

• The while statement is used to repeat
statements:

• How it works:
‣ expression is evaluated:

‣ If it is true, then statement is executed, then it starts over
(and expression is evaluated again).

‣ If it is false, then statement is skipped  
(and the loop is done).

while (expression)
 statement

while example

5

• Example:

• Output

int number = 1;

while (number <= 3)
{
 cout << “Student” << number << endl;
 number = number + 1;
}

cout << “Done” << endl;

Student1
Student2
Student3
Done

Hand trace!

5.3 Using while for input validation

6

• Inspect user input values to make sure they are
valid.

• If not valid, ask user to re-enter value:
int number;

cout << “Enter a number between 1 and 10: “;
cin >> number;

while (number < 1 || number > 10) {
 cout << “Please enter a number between 1 and 10: “;
 cin >> number;
}

// Do something with number here  

Don’t forget to input
the next value

Explain the valid
values in the prompt

This expression is true when
number is OUT of range.

Input Validation

7

! Checking for valid characters:

char answer;

cout << “Enter the answer to question 1 (a,b,c or d): “;
cin >> answer;

while (answer != ‘a’ && answer != ‘b’ &&
 answer != ‘c’ && answer != ‘d’)
{
 cout << “Please enter a letter a, b, c or d: “;
 cin >> answer;
}

// Do something with answer here  

5.4 Counters

! Counter: a variable that is incremented (or
decremented) each time a loop repeats.

! Used to keep track of the number of iterations
(how many times the loop has repeated).

! Must be initialized before entering loop!!!!

8

Counters

9

! Example (how many times does the user enter
an invalid number?):
int number;
int count = 0;

cout << “Enter a number between 1 and 10: “;
cin >> number;

while (number < 1 || number > 10) {
 count = count + 1;
 cout << “Please enter a number between 1 and 10: “;
 cin >> number;
}

cout << count << “ invalid numbers were entered.“ << endl;

// Do something with number here  

Counters

10

! Example, using the counter to control how
many times the loop iterates:

! Output:

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num = 1; // counter variable
while (num <= 8) {
 cout << num << “ “ << (num * num) << endl;
 num = num + 1; // increment the counter
}

Number Number Squared
------ --------------
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64

Q1,2,3,4,5

5.5 The do-while loop

11

! Execute the statement(s), then repeat as long as
the relational expression is true.

do-while syntax and semantics

12

• The do-while loop has the test expression at
the end:

• How it works:
‣ statement is executed.
‣ expression is evaluated:

‣ If it is true, then it starts over (and statement is executed
again).

‣ If (when) it is false, the loop is done.

• statement always executes at least once.

do
 statement
while (expression);

Don’t forget the
semicolon at the end

do-while example

13

• Example:

• Output

int number = 1;
do
{
 cout << “Student” << number << endl;
 number = number + 1;
} while (number <= 3);

cout << “Done” << endl;

Student1
Student2
Student3
Done

do-while with menu

14

char choice;

do {
 cout << “A: Make a reservation.” << endl;
 cout << “B: View flight status.” << endl;
 cout << “C: Check-in for a flight.” << endl;
 cout << “D: Quit the program.” << endl;
 cout << “Enter your choice: “;

 cin >> choice;

 switch (choice) {
 case ‘A’: // code to make a reservation
 break;
 case ‘B’: // code to view flight status
 break;
 case ‘C’: // code to process check-in
 break;
 }
} while(choice != ‘D’);

Different ways to control the loop
! Conditional loop: body executes as long as a

certain condition is true
‣ input validation: loops as long as input is invalid

! Count-controlled loop: body executes a specific
number of times using a counter
‣ actual count may be a literal, or stored in a variable.

! Count-controlled loop follows a pattern:
‣ initialize counter to zero (or other start value).

‣ test counter to make sure it is less than count.

‣ update counter during each iteration. 15

5.6 The for loop

16

• The for statement is used to easily implement a
count-controlled loop.

• How it works:
1. expr1 is executed (initialization)
2. expr2 is evaluated (test)
3. If it is true, then statement is executed,  

then expr3 is executed (update),  
then go to step 2.

4. If (when) it is false, then statement is skipped  
(and the loop is done).

for (expr1; expr2; expr3)
 statement

The for loop flow chart

17

expr1

expr2 expr3statement

for (expr1; expr2; expr3)
 statement

The for loop and the while loop

18

• The for statement

• is equivalent to the following code using a while
statement:

for (expr1; expr2; expr3)
 statement

expr1; // initialize
while (expr2) { // test
 statement
 expr3; // update
}

for loop example

19

• Example:

• Output

int number;
for (number = 1; number <= 3; number++)
{
 cout << “Student” << number << endl;
}

cout << “Done” << endl;

Student1
Student2
Student3
Done

Equivalent to
number = number + 1

Note: no semicolon

Counters: redo

20

! Example, using the counter to control how
many times the loop iterates:

! Rewritten using a for loop:

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num = 1; // counter variable
while (num <= 8) {
 cout << num << “ “ << (num * num) << endl;
 num = num + 1; // increment the counter
}

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num;
for (num = 1; num <= 8; num++)
 cout << num << “ “ << (num * num) << endl;

Define variable in init-expr

21

• You may define the loop counter variable inside
the for loop’s initialization expression:

• Do NOT try to access x outside the loop  
(the scope of x is the for loop statement ONLY)

• What is the output of the for loop?

for (int x = 10; x > 0; x=x-2)
 cout << x << endl;

cout << x << endl; //ERROR, can’t use x here

Hand trace!

User-controlled count

22

• You may use a value input by the user to
control the number of iterations:

• How many times does the loop iterate?

int maxCount;
cout << “How many squares do you want?” << endl;
cin >> maxCount;

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

for (int num = 1; num <= maxCount; num++)
 cout << num << “ “ << (num * num) << endl;

The exprs in the for are optional

23

• You may omit any of the three exprs in the for
loop header

• Style: use a while loop for something like this.
• When expr2 is missing, it is true by default.

int value, incr;
cout << “Enter the starting value: “;
cin >> value;

for (; value <= 100;)
{
 cout << “Please enter the next increment amount: “;
 cin >> incr;
 value = value + incr;
 cout << value << endl;
}

